
Transport Provider Interface Specification

Transport Provider Interface

Specification
UNIX International

OSI Special Interest Group
Revision: 1.5

December 10, 1992

Version 1.1 Edition 7.20141001
Updated October 25, 2014

Distributed with Package openss7-1.1.7.20141001

Copyright c© 2008-2014 Monavacon Limited
Copyright c© 2001-2008 OpenSS7 Corporation

Copyright c© 1992 UNIX International, Inc.
All Rights Reserved.

Abstract

This document is a Specification containing technical details concerning the implemen-
tation of the Transport Provider Interface for OpenSS7. It contains recommendations
on software architecture as well as platform and system applicability of the Transport
Provider Interface. It provides abstraction of the transport interface to these compo-
nents as well as providing a basis for transport control for other transport protocols.

Brian Bidulock <bidulock@openss7.org> for

The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Published by:

UNIX International
Waterview Corporate Center
20 Waterview Boulevard
Parsippany, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1 201-263-8400
Fax: +1 201-263-8401

Copyright c© 2008-2014 Monavacon Limited
Copyright c© 2001-2008 OpenSS7 Corporation
Copyright c© 1997-2001 Brian F. G. Bidulock
Copyright c© 1992 UNIX International, Inc.

All Rights Reserved.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appears in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name
UNIX International not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. UNIX International makes no representations about the
suitability of this documentation for any purpose. It is provided “as is” without express or implied
warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS DOC-
UMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS DOCUMENTATION.

Notice:

This document is based on the UNIX System Laboratories Transport Provider Interface (TPI)
specification which was used with permission by the UNIX International OSI Special Interest Group
(UI OSISIG). Participation in the UI OSISIG is open to UNIX International members and other
interested parties. For further information contact UNIX International at the addresses above.

UNIX International is making this documentation available as a reference point for the industry.
While UNIX International believes that these interfaces are well defined in this release of the doc-
ument, minor changes may be made prior to products conforming to the interfaces being made
available from UNIX System Laboratories or UNIX International members.

http://www.monavacon.com/
http://www.openss7.com/
mailto:bidulock@openss7.org

Trademarks:

UNIXR© is a registered trademark of UNIX System Laboratories in the United States and other
countries. X/Open(TM) is a trademark of the X/Open Company Ltd. in the UK and other countries.
OpenSS7(TM) is a trademark of OpenSS7 Corporation in the United States and other countries.

Published by:

OpenSS7 Corporation
1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Copyright c© 2008-2014 Monavacon Limited
Copyright c© 2001-2008 OpenSS7 Corporation
Copyright c© 1997-2000 Brian F. G. Bidulock
All Rights Reserved.

Unauthorized distribution or duplication is prohibited.

Permission to use, copy and distribute this documentation without modification, for any purpose
and without fee or royalty is hereby granted, provided that both the above copyright notice and
this permission notice appears in all copies and that the name of Monavacon Limited and OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this documentation
or its contents without specific, written prior permission. Monavacon Limited and OpenSS7 Cor-
poration make no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.

Notice:

Monavacon Limited and OpenSS7 Corporation disclaim all warranties with regard to this doc-
umentation including all implied warranties of merchantability, fitness for a particular purpose,
non-infringement, or title; that the contents of the document are suitable for any purpose, or that
the implementation of such contents will not infringe on any third party patents, copyrights, trade-
marks or other rights. In no event shall Monavacon Limited or OpenSS7 Corporation be liable for
any direct, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with any use of this document or the performance or implementation
of the contents thereof.

Monavacon Limited and OpenSS7 Corporation reserve the right to revise this software and doc-
umentation for any reason, including but not limited to, conformity with standards promulgated
by various agencies, utilization of advances in the state of the technical arts, or the reflection of
changes in the design of any techniques, or procedures embodied, described, or referred to herein.
Monavacon Limited and OpenSS7 Corporation are under no obligation to provide any feature listed
herein.

http://www.openss7.com/
http://www.monavacon.com/
http://www.openss7.com/
mailto:bidulock@openss7.org

i

Short Contents

1 Introduction . 3

2 Transport Provider Interface . 5

3 Mapping of Transport Primitives to OSI . 31

4 Allowable Sequence of Transport Service Primitives 33

5 Transport Primitive Precedence . 39

References . 41

Index . 43

iii

Table of Contents

1 Introduction . 3

2 Transport Provider Interface . 5
2.1 Common Transport Primitives . 7

2.1.1 User-Originated Primitives . 7
2.1.1.1 T INFO REQ - get transport protocol parameter sizes. 7
2.1.1.2 T BIND REQ - bind protocol address request. 7
2.1.1.3 T UNBIND REQ - unbind protocol address request. 8
2.1.1.4 T OPTMGMT REQ - options management. 9
2.1.1.5 T ADDR REQ - get protocol addresses request. 10

2.1.2 Provider-Originated Primitives . 10
2.1.2.1 T INFO ACK - protocol information acknowledgement. 10
2.1.2.2 T BIND ACK - bind protocol address acknowledgement. . . . 12
2.1.2.3 T OPTMGMT ACK - option management acknowledgement.

. 13
2.1.2.4 T ERROR ACK - error acknowledgement. 14
2.1.2.5 T OK ACK - success acknowledgement. 15
2.1.2.6 T ADDR ACK - get protocol addresses acknowledgement.

. 15
2.2 Connection-Mode Transport Primitives . 16

2.2.1 User-Originated Primitives . 16
2.2.1.1 T CONN REQ - connect request. 16
2.2.1.2 T CONN RES - connection response. 17
2.2.1.3 T DISCON REQ - disconnect request. 18
2.2.1.4 T DATA REQ - data request. 19
2.2.1.5 T EXDATA REQ - expedited data request. 19
2.2.1.6 T ORDREL REQ - orderly release request. 20

2.2.2 Provider-Originated Primitives . 20
2.2.2.1 T CONN IND - connect indication. 20
2.2.2.2 T CONN CON - connection confirm. 21
2.2.2.3 T DISCON IND - disconnect indication. 21
2.2.2.4 T DATA IND - data indication. 21
2.2.2.5 T EXDATA IND - expedited data indication. 22
2.2.2.6 T ORDREL IND - orderly release indication. 22

2.3 Connectionless-Mode Transport Primitives . 23
2.3.1 User-Originated Primitives . 23

2.3.1.1 T UNITDATA REQ - unitdata request. 23
2.3.2 Provider-Originated Primitives . 23

2.3.2.1 T UNITDATA IND - unitdata indication. 23
2.3.2.2 T UDERROR IND - unitdata error indication. 24

2.4 Note about Structure Elements . 25
2.5 Overview of Error Handling Capabilities . 26

2.5.1 Non-fatal Errors . 26
2.5.2 Fatal Errors . 26

2.6 Transport Service Interface Sequence of Primitives 27
2.7 Precedence of Transport Interface Primitives on a Stream 28
2.8 Rules for Flushing Queues . 29

iv Transport Provider Interface

3 Mapping of Transport Primitives to OSI 31

4 Allowable Sequence of Transport Service Primitives . . . 33

5 Transport Primitive Precedence . 39

References . 41

Index . 43

Transport Provider Interface Table of Contents

List of Figures

Figure 2.1: Example of a stream from a user to a transport provider . 5
Figure 3.1: Mapping ISO IS 8072 and IS 8072/DAD1 to Kernel-level Transport Service

Primitives . 31
Figure 4.1: Kernel Level Transport Interface States . 33
Figure 4.2: Kernel Level Transport Interface Outgoing Events . 35
Figure 4.3: Kernel Level Transport Interface Incoming Events . 36

2014-10-25 1

List of Tables

Table 4.1: State Table Variables . 34
Table 4.2: State Table Outputs . 34
Table 4.3: Initialization State Table . 37
Table 4.4: Connection/Release/Data-Transfer State Table for Connection Oriented Service . . 38
Table 4.5: Data-Transfer State Table for Connectionless Service . 38
Table 5.1: Stream Write Queue Precedence Table . 39
Table 5.2: Stream Read Queue Precedence Table . 40

2 Version 1.1 Rel. 7.20141001

Transport Provider Interface Introduction

1 Introduction

To support a framework for providing networking products in the UNIXR© system, an effort is
underway to define service interfaces that map to strategic levels of theOpen Systems Interconnection
(OSI) Reference Model. These service interfaces hide implementation details of a particular service
from the consumer of the service. This enables system programmers to develop software independent
of the particular protocol that provides a specific service. The interfaces being specified for UNIXR©
System V are defined within the STREAMS environment. This document specifies a kernel-level
interface that supports the services of the Transport Layer for connection-mode and connectionless
mode services.

This specification applies to System V Release 4.2 ES/MP.

2014-10-25 3

Transport Provider Interface Transport Provider Interface

2 Transport Provider Interface

The transport interface defines a message interface to a transport provider implemented under
STREAMS.1

This version of the transport provider interface supports the XPG4 version of the X/Open Transport
Interface (XTI). A user communicates to a transport provider via a full duplex path known as a
stream (see Figure 2.1). This stream provides a mechanism in which messages may be passed to the
transport provider from the transport user and vice versa.� �

user level

transport

user

transport

interface

library

kernel level

transport

provider

transport interface

library cooperating

streams module

UNIX kernel

Stream mechanism

full duplex

stream

Figure 2.1: Example of a stream from a user to a transport provider
 	
The STREAMS messages that are used to communicate transport service primitives between the
transport user and the transport provider may have one of the following formats:

1. A M_PROTO message block followed by zero or more M_DATA message blocks. The M_PROTO

message block contains the type of transport service primitive and all the relevant arguments
associated with the primitive. The M_DATA blocks contain transport user data associated with
the transport service primitive.

2. One M_PCPROTO message block containing the type of transport service primitive and all the
relevant arguments associated with the primitive.

1 It is assumed that the reader of this document is familiar with the concept STREAMS.

2014-10-25 5

Chapter 2: Transport Provider Interface

3. One or more M_DATA message blocks containing transport user data.

The following sections describe the transport primitives which define both a connection-mode and
connectionless-mode transport service.

For both types of transport service, two types of primitives exist: primitives which originate from
the transport user and primitives which originate from the transport provider. The primitives which
originate from the transport user make requests to the transport provider or respond to an event
of the transport provider. The primitives which originate from the transport provider are either
confirmations of a request or are indications to the transport user that an event has occurred.
Section 2 lists the primitive types along with the mapping of those primitives to the STREAMS

message types and the transport primitives of the ISO IS 8072 and IS 8072/DAD transport service
definitions. The format of these primitives and the rules governing the use of them are described in
sections 2.1, 2.2, and 2.3.

6 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

2.1 Common Transport Primitives

The following transport primitives are common to both the connection-mode and connectionless-
mode transport services.

2.1.1 User-Originated Primitives

The following describes the format of the transport primitives which are generated by the transport
user.

2.1.1.1 T INFO REQ - get transport protocol parameter sizes.

This primitive requests the transport provider to return the sizes of all relevant protocol parameters,
plus the current state of the provider.1 The format of the message is one M_PCPROTO message block.
The format of the M_PCPROTO message block is as follows:

struct T_info_req {

long PRIM_type; /* always T_INFO_REQ */

}

Where PRIM type indicates the primitive type.

This primitive requires the transport provider to generate one of the following acknowledgements
upon receipt of the primitive and that the transport user wait for the acknowledgement prior to
issuing any other primitives:

– Successful

Acknowledgement of the primitive via the T_INFO_ACK described in Section 2.1.2.1
[T INFO ACK], page 10.

– Non-fatal errors

There are no errors associated with the issuance of this primitive.

2.1.1.2 T BIND REQ - bind protocol address request.

This primitive requests that the transport provider bind a protocol address to the stream, negotiate
the number of connect indications allowed to be outstanding by the transport provider for the
specified protocol address, and activate2 the stream associated with the protocol address. The
format of the message is one M_PROTO message block. The format of the M_PROTO message block is
as follows:

struct T_bind_req {

long PRIM_type; /* always T_BIND_REQ */

long ADDR_length; /* length of address */

long ADDR_offset; /* offset of address */

unsigned long CONIND_number; /* requested number of

connect indications to

be queued */

}

Where PRIM type indicates the primitive type. ADDR length is the length3 of the protocol ad-
dress to be bound to the stream and ADDR offset is the offset from the beginning of the M_PROTO

block where the protocol address begins. CONIND number4 is the requested number of connect

1 The T_INFO_REQ and T_INFO_ACK primitives have no effect on the state of the transport provider and do not
appear in the state tables.

2 A stream is viewed as active when the transport provider may receive and transmit TPDUs (transportpro-
tocol data units) associated with the stream.

3 All lengths, offsets, and sizes in all structures refer to the number of bytes.
4 This field should be ignored by those providing a connectionless transport service.

2014-10-25 7

Chapter 2: Transport Provider Interface

indications5 allowed to be outstanding by the transport provider for the specified protocol address.
The proper alignment of the address in the M_PROTO message block is not guaranteed. The address
in the M_PROTO message block is however, aligned the same as it was received from the transport
user.

For rules governing the requests made by this primitive, see Section 2.1.2.2 [T BIND ACK], page 12.

This primitive requires the transport provider to generate one of the following acknowledgements
upon receipt of the primitive, and the transport user must wait for the acknowledgement before
issuing any other primitives:

– Successful

Correct acknowledgement of the primitive is indicated via the T_BIND_ACK primitive.

– Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in Section 2.1.2.4
[T ERROR ACK], page 14. The allowable errors are as follows:

[TBADADDR]

This indicates that the protocol address was in an incorrect format or the address
contained illegal information. It is not intended to indicate protocol errors.

[TNOADDR] This indicates that the transport provider could not allocate an address.

[TACCES] This indicates that the user did not have proper permissions for the use of the
requested address.

[TOUTSTATE]

The primitive would place the transport interface out of state.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the
primitive.

[TADDRBUSY]

This indicates that the requested address is already in use.

2.1.1.3 T UNBIND REQ - unbind protocol address request.

This primitive requests that the transport provider unbind the protocol address associated with the
stream and deactivate the stream. The format of the message is one M_PROTO message block. The
format of the M_PROTO message block is as follows:

struct T_unbind_req {

long PRIM_type; /* always T_UNBIND_REQ */

}

Where PRIM type indicates the primitive type.

This primitive requires the transport provider to generate the following acknowledgements upon
receipt of the primitive and that the transport user must wait for the acknowledgement before
issuing any other primitives:

– Successful

Correct acknowledgement of the primitive is indicated via the T_OK_ACK primitive described in
Section 2.1.2.5 [T OK ACK], page 15.

5 If the number of outstanding connect indications equals CONIND number, the transport provider need not
discard further incoming connect indications, but may chose to queue them internally until the number of
outstanding connect indications drops below CONIND number.

8 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

– Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in Section 2.1.2.4
[T ERROR ACK], page 14. The allowable errors are as follows:

[TOUTSTATE]

The primitive would place the transport interface out of state.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the
primitive.

2.1.1.4 T OPTMGMT REQ - options management.

This primitive allows the transport user to manage the options associated with the stream. The
format of the message is one M_PROTO message block. The format of the M_PROTO message block is
as follows:

struct T_optmgmt_req {

long PRIM_type; /* always T_OPTMGMT_REQ */

long OPT_length; /* options length */

long OPT_offset; /* options offset */

long MGMT_flags; /* flags */

}

Where PRIM type indicates the primitive type. OPT length is the length of the protocol options
associated with the primitive and OPT offset is the offset from the beginning of the M_PROTO block
where the options begin. The proper alignment of the options is not guaranteed. The options are
however, aligned the same as it was received from the transport user. MGMT flags are the flags
which define the request made by the transport user. The allowable flags are:

T_NEGOTIATE

Negotiate and set the options with the transport provider.

T_CHECK Check the validity of the specified options.

T_CURRENT Return the options currently in effect.

T_DEFAULT Return the default options.

For the rules governing the requests made by this primitive see the T_OPTMGMT_ACK primitive in
Section 2.1.2.3 [T OPTMGMT ACK], page 13.

This primitive requires the transport provider to generate one of the following acknowledgements
upon receipt of the primitive and that the transport user wait for the acknowledgement before issuing
any other primitives:

– Successful

Acknowledgement of the primitive via the T_OPTMGMT_ACK.

– Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in Section 2.1.2.4
[T ERROR ACK], page 14. The allowable errors are as follows:

[TACCES] This indicates that the user did not have proper permissions for the use of the
requested options.

[TOUTSTATE]

The primitive would place the transport interface out of state.

[TBADOPT] This indicates that the options as specified were in an incorrect format, or they
contained illegal information.

2014-10-25 9

Chapter 2: Transport Provider Interface

[TBADFLAG]

This indicates that the flags as specified were incorrect or illegal.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the
primitive.

[TNOTSUPPORT]

This transport provider does not support the requested flag (T_CHECK or T_

CURRENT).

2.1.1.5 T ADDR REQ - get protocol addresses request.

This primitive requests that the transport provider return the local protocol address that is bound
to the stream and the address of the remote transport entity if a connection has been established.

The format of the message is one M_PROTO message block. The format of the M_PROTO message block
is as follows:

struct T_addr_req {

long PRIM_type; /* always T_ADDR_REQ */

}

Where PRIM type indicates the primitive type. This primitive requires the transport provider to
generate one of the following acknowledgements upon receipt of the primitive, and the transport
user must wait for the acknowledgement before issuing any other primitives:

– Successful

Correct acknowledgement of the primitive is indicated via the T_ADDR_ACK primitive.

– Non-fatal errors

There are no errors associated with the issuance of this primitive.

2.1.2 Provider-Originated Primitives

The following describes the format of the transport primitives which are generated by the transport
provider.

2.1.2.1 T INFO ACK - protocol information acknowledgement.

This primitive indicates to the transport user any relevant protocol-dependent parameters. It should
be initiated in response to the T_INFO_REQ primitive described above. The format of this message
is one M_PCPROTO message block. The format of the M_PCPROTO message block is as follows:

struct T_info_ack {

long PRIM_type; /* always T_INFO_ACK */

long TSDU_size; /* max TSDU size */

long ETSDU_size; /* max ETSDU size */

long CDATA_size; /* Connect data size */

long DDATA_size; /* Discon data size */

long ADDR_size; /* TSAP size */

long OPT_size; /* options size */

long TIDU_size; /* TIDU size */

long SERV_type; /* service type */

long CURRENT_state; /* current state */

long PROVIDER_flag; /* provider flags */

}

where the fields of this message have the following meanings:

PRIM type
This indicates the primitive type.

10 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

TSDU size A value greater than zero specifies the maximum size of a transport service data unit
(TSDU); a value of zero specifies that the transport provider does not support the
concept of TSDU, although it does support the sending of a data stream with no
logical boundaries preserved across a connection; a value of ‘-1’ specifies that there is
nolimit on the size of a TSDU; and a value of ‘-2’ specifies that the transfer of normal
data is not supported by the transport provider.

ETSDU size
A value greater than zero specifies the maximum size of an expeditedtransport service
data unit (ETSDU); a value of zero specifies that the transport provider does not
support the concept of ETSDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connection; a value of ‘-1’
specifies thatthere is no limit on the size of an ETSDU; and a value of ‘-2’ specifies
that the transfer of expedited data is not supported by the transport provider.

CDATA size
A value greater than or equal to zero specifies the maximum amount of data that may be
associated with connection establishment primitives; and a value of ‘-2’ specifies that
the transport provider does not allow data to be sent with connection establishment
primitives.

DDATA size
A value greater than or equal to zero specifies the maximum amount of data that may
be associated with the disconnect primitives; and a value of ‘-2’ specifies that the
transport provider does not allow data to be sent with the disconnect primitives.

ADDR size
A value greater than or equal to zero indicates the maximum size of a transport protocol
address; and a value of ‘-2’ specifies that the transport provider does not provide user
access to transport protocol addresses.

OPT size A value greater than or equal to zero indicates the maximum number of bytes of
protocol-specific options supported by the provider; a value of ‘-2’ specifies that the
transport provider does not support user-settable options although they’re read-only;
and a value of -3 specifies that the transport provider does not support any options.

TIDU size 6 This is the size of the transport protocol interface data unit, and should not exceed
the tunable system limit, if non-zero, for the size of a STREAMS message.

SERV type This field specifies the service type supported by the transport provider, and is one of
the following:

T_COTS The provider service is connection oriented with no orderly release sup-
port.

T_COTS_ORD

The provider service is connection oriented with orderly release support.

T_CLTS The provider service is a connectionless transport service.

CURRENT state
This is the current state of the transport provider.

6 This is the amount of user data that may be present in a single T_DATA_REQ or T_EXDATA_REQ primitive.

2014-10-25 11

Chapter 2: Transport Provider Interface

PROVIDER flag
This field specifies additional properties specific to the transport provider and may
alter the way the transport user communicates. Transport providers supporting the
features of XTI in XPG4 and beyond must send up a version number as specified below.
The following flags may be set by the provider:

SENDZERO This flag indicates that the transport provider supports the sending of
zero-length TSDUs.

XPG4_1 This indicates that the transport provider conforms to XTI in XPG4 and
supports the new primitives T_ADDR_REQ and T_ADDR_ACK.

The following rules apply when the type of service is T_CLTS:

— The ETSDU size, CDATA size and DDATA size fields should be ‘-2’.

— The TSDU size should equal the TIDU size.

2.1.2.2 T BIND ACK - bind protocol address acknowledgement.

This primitive indicates to the transport user that the specified protocol address has been bound to
the stream, that the specified number of connect indications are allowed to be queued by the trans-
port provider for the specified protocol address, and that the stream associated with the specified
protocol address has been activated. The format of the message is one M_PCPROTO message block.
The format of the M_PCPROTO message block is as follows:

struct T_bind_ack {

long PRIM_type; /* always T_BIND_ACK */

long ADDR_length; /* length of address - see note in sec.

1.4 */

long ADDR_offset; /* offset of address */

unsigned long CONIND_number; /* connect indications to

be queued */

}

Where PRIM type indicates the primitive type. ADDR length is the length of the protocol address
that was bound to the stream and ADDR offset is the offset from the beginning of the M_PCPROTO

block where the protocol address begins. CONIND number7 is the accepted number of connect
indications allowed to be outstanding by the transport provider for the specified protocol address.
The proper alignment of the address in the M_PCPROTO message block is not guaranteed.

The following rules apply to the binding of the specified protocol address to the stream:

— If the ADDR length field in the T_BIND_REQ primitive is ‘0’, then the transport provider must
assign a transport protocol address to the user.

— The transport provider is to bind the transport protocol address as specified in the T_BIND_

REQ primitive. If the requested transport protocol address is in use or if the transport provider
cannot bind the specified address, it must return an error.

The following rules apply to negotiating the CONIND number argument:

— The returned value must be less than or equal to the corresponding requested number as
indicated in the T_BIND_REQ primitive.

— If the requested value is greater than zero, the returned value must also be greater than zero.

— Only one stream that is bound to the indicated protocol address may have a negotiated accepted
number of maximum connect requests greater than zero. If a T_BIND_REQ primitive specifies

7 This field doesn’t apply to connectionless transport providers.

12 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

a value greater than zero, but another stream has already bound itself to the given protocol
address with a value greater than zero, the transport provider must return an error.

— If a stream with CONIND number greater than zero is used to accept a connection, the stream
will be found busy during the duration of that connection and no other streams may be bound
to that protocol address with a CONIND number greater than zero. This will prevent more
than one stream bound to the identical protocol address from accepting connect indications.

— A stream requesting a CONIND number of zero should always be legal. This indicates to the
transport provider that the stream is to be used to request connections only.

— A stream with a negotiated CONIND number greater than zero may generate connect requests
or accept connect indications.

If the above rules result in an error condition, then the transport provider must issue an T_ERROR_ACK

primitive to the transport user specifying the error as defined in the description of the T_BIND_REQ
primitive.

2.1.2.3 T OPTMGMT ACK - option management acknowledgement.

This indicates to the transport user that the options management request has completed. The
format of the message is one M_PCPROTO message block. The format of the M_PCPROTO message block
is as follows:

struct T_optmgmt_ack {

long PRIM_type; /* always T_OPTMGMT_ACK */

long OPT_length; /* options length - see note in sec. 1.4 */

long OPT_offset; /* options offset */

long MGMT_flags; /* flags */

}

Where PRIM type indicates the primitive type. OPT length is the length of the protocol options
associated with the primitive and OPT offset is the offset from the beginning of the M_PCPROTO

block where the options begin. The proper alignment of the options is not guaranteed.

MGMT flags should be the same as those specified in the T_OPTMGMT_REQ primitive with any addi-
tional flags as specified below.

The following rules apply to the T_OPTMGMT_ACK primitive.

— If the value of MGMT flags in the T_OPTMGMT_REQ primitive is T_DEFAULT, the provider should
return the default provider options without changing the existing options associated with the
stream.

— If the value of MGMT flags in the T_OPTMGMT_REQ primitive is T_CHECK, the provider should
return the options as specified in the T_OPTMGMT_REQ primitive along with the additional flags T_
SUCCESS or T_FAILURE which indicate to the user whether the specified options are supportable
by the provider. The provider should not change any existing options associated with the
stream.

— If the value of MGMT flags in the T_OPTMGMT_REQ primitive is T_NEGOTIATE, the provider
should set and negotiate the option as specified by the following rules:

— If the OPT length field of the T_OPTMGMT_REQ primitive is ‘0’, then the transport provider
is to set and return the default options associated with the stream in the T_OPTMGMT_ACK
primitive.

— If options are specified in the T_OPTMGMT_REQ primitive, then the transport provider should
negotiate those options, set the negotiated options and return the negotiated options in the
T_OPTMGMT_ACK primitive. It is the user’s responsibility to check the negotiated options
returned in the T_OPTMGMT_ACK primitive and take appropriate action.

2014-10-25 13

Chapter 2: Transport Provider Interface

— If the value of MGMT flags in the T_OPTMGMT_REQ primitive is T_CURRENT, the provider should
return the current options that are currently associated with the stream.

— If the value of MGMT flags in the T_OPTMGMT_REQ primitive is either T_NEGOTIATE or T_CHECK
and the transport provider cannot support the requested flag, an error is to be returned.

If the above rules result in an error condition, the transport provider must issue a T_ERROR_ACK

primitive to the transport user specifying the error as defined in the description of the T_OPTMGMT_
REQ primitive.

2.1.2.4 T ERROR ACK - error acknowledgement.

This primitive indicates to the transport user that a non-fatal8 error has occurred in the last
transport-user-originated primitive. This may only be initiated as an acknowledgement for those
primitives that require one. It also indicates to the user that no action was taken on the primitive
that caused the error. The format of the message is one M_PCPROTO message block. The format of
the M_PCPROTO message block is as follows:

struct T_error_ack {

long PRIM_type; /* always T_ERROR_ACK */

long ERROR_prim; /* primitive in error */

long TLI_error; /* TLI error code - see note in sec. 1.4 */

long UNIX_error; /* UNIX error code - see note in sec. 1.4 */

}

Where PRIM type identifies the primitive. ERROR prim identifies the primitive type that caused
the error and TLI error contains the Transport Level Interface error code. UNIX error contains the
UNIXR© System error code. This may only be non zero if TLI error is equal to [TSYSERR]. The
following Transport Level Interface error codes are allowed to be returned:

[TBADADDR]

This indicates that the protocol address as specified in the primitive was in an incorrect
format or the address contained illegal information.

[TBADOPT] This indicates that the options as specified in the primitive were in an incorrect format,
or they contained illegal information.

[TBADF] This indicates that the stream queue pointer as specified in the primitive was illegal.

[TNOADDR] This indicates that the transport provider could not allocate an address.

[TACCES] This indicates that the user did not have proper permissions.

[TOUTSTATE]

The primitive would place the interface out of state.

[TBADSEQ] The sequence number specified in the primitive was incorrect or illegal.

[TBADFLAG]

The flags specified in the primitive were incorrect or illegal.

[TBADDATA]

The amount of user data specified was illegal.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the primitive.

[TADDRBUSY]

The requested address is in use.

8 For a overview of the error handling capabilities available to the transport provider see section 2.4.

14 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

[TRESADDR]

The transport provider requires that the responding stream is bound to the same
address as the stream on which the connection indication was received.

[TNOTSUPPORT]

The transport provider does not support the requested capability.

2.1.2.5 T OK ACK - success acknowledgement.

This primitive indicates to the transport user that the previous transport-user-originated primitive
was received successfully by the transport provider. It does not indicate to the transport user any
transport protocol action taken due to the issuance of the last primitive. This may only be initiated
as an acknowledgement for those primitives that require one. The format of the message is one
M_PCPROTO message block. The format of the M_PCPROTO message block is as follows:

struct T_ok_ack {

long PRIM_type; /* always T_OK_ACK */

long CORRECT_prim; /* primitive */

}

Where PRIM type identifies the primitive. CORRECT prim contains the successfully received
primitive type.

2.1.2.6 T ADDR ACK - get protocol addresses acknowledgement.

This primitive indicates to the transport user the addresses of the local and remote transport entities.
The local address is the protocol address that has been bound to the stream. If a connection has
been established, the remote address is the protocol address of the remote transport entity. The
format of the message is one M_PCPROTO message block. The format of the M_PCPROTO message block
is as follows:

struct T_addr_ack {

long PRIM_type; /* always T_ADDR_ACK */

long LOCADDR_length; /* length of local address - see

note in sec. 1.4 */

long LOCADDR_offset; /* offset of local address */

long REMADDR_length; /* length of remote address - see

note in sec. 1.4 */

long REMADDR_offset; /* offset of remote address */

}

Where PRIM type indicates the primitive type. LOCADDR length is the length of the protocol
address that was bound to the stream and LOCADDR offset is the offset from the beginning of
the M_PCPROTO block where the protocol address begins. If the stream is in the data transfer
state, REMADDR length is the length of the protocol address of the remote transport entity and
REMADDR offset is the offset from the beginning of the M_PCPROTO block where the protocol address
begins.

The following rules apply:

— If the interface is in any state but T_DATA_XFER, the values returned for REMADDR length
and REMADDR offset must be ‘0’.

— If the interface is in the T_UNINIT or T_UNBND state, the values returned for LOCADDR length
and LOCADDR offset must be ‘0’.

2014-10-25 15

Chapter 2: Transport Provider Interface

2.2 Connection-Mode Transport Primitives

The following transport primitives pertain only to the connection-mode transport service.

2.2.1 User-Originated Primitives

The following describes the format of the transport primitives which are generated by the transport
user.

2.2.1.1 T CONN REQ - connect request.

This primitive requests that the transport provider make a connection to the specified destination.
The format of this message is one M_PROTO message block followed by zero or more M_DATA blocks
if any user data is specified by the transport user. The format of the M_PROTO message block is as
follows:

struct T_conn_req {

long PRIM_type; /* always T_CONN_REQ */

long DEST_length; /* dest addr length */

long DEST_offset; /* dest addr offset */

long OPT_length; /* options length */

long OPT_offset; /* options offset */

}

Where PRIM type identifies the primitive type. DEST length is the length of the destination
address and DEST offset is the offset from the beginning of the M_PROTO message block where the
destination address begins. Similarly, OPT length and OPT offset describe the location of the
requested options associated with the primitive. The proper alignment of the destination address
and options in the M_PROTO message block is not guaranteed.1 The destination address and options
in the M_PROTO message block are however, aligned the same as they were received from the transport
user.

This primitive requires the transport provider to generate one of the following acknowledgements
upon receipt of the primitive, and the transport user must wait for the acknowledgement before
issuing any other primitives:

– Successful

Correct acknowledgement of the primitive is indicated via the T_OK_ACK primitive described in
Section 2.1.2.5 [T OK ACK], page 15.

– Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in Section 2.1.2.4
[T ERROR ACK], page 14. The allowable errors are as follows:

[TACCES] This indicates that the user did not have proper permissions for the use of the
requested address or options.

[TBADADDR]

This indicates that the protocol address was in an incorrect format or the address
contained illegal information. It is not intended to indicate protocol connection
errors, such as an unreachable destination. Those error types are indicated via
the T_DISCON_IND primitive.

1 The information located by the defined structures may not be in the proper alignment in the message blocks,
so the casting of structure definitions over these fields may produce incorrect results. It is advised that the
transport providers supply exact format specifications for the appropriate information to the transport users.

16 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

[TBADOPT] This indicates that the options were in an incorrect format, or they contained
illegal information.

[TOUTSTATE]

The primitive would place the transport interface out of state.

[TBADDATA]

The amount of user data specified was illegal.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the
primitive.

[TADDRBUSY]

This transport provider does not support multiple connections with the same local
and remote addresses.

2.2.1.2 T CONN RES - connection response.

This primitive requests that the transport provider accept a previous connect request on the specified
response queue. The format of this message is one M_PROTO message block followed by zero or more
M_DATA blocks if any user data is specified by the transport user. The format of the M_PROTO message
block is as follows:

struct T_conn_res {

long PRIM_type; /* always T_CONN_RES */

queue_t *QUEUE_ptr; /* response queue ptr */

long OPT_length; /* options length */

long OPT_offset; /* options offset */

long SEQ_number; /* sequence number */

}

Where PRIM type identifies the primitive type. QUEUE ptr identifies the transport provider queue
pair (i.e. read queue pointer) which should be used to accept the connect request. This queue pointer
should map onto a stream which is already bound to a protocol address but if the stream is not
bound, the transport provider must bind it to the same protocol address that was bound to the
stream on which the connection indication arrived. OPT length is the length of the responding
options and OPT offset is the offset from the beginning of the M_PROTO message block where the
responding options begin. SEQ number is the sequence number which identifies the connection to be
responded to. The proper alignment of the options in the M_PROTO message block is not guaranteed.
The options in the M_PROTO message block are, however, aligned the same as they were received
from the transport user.

This primitive requires the transport provider to generate one of the following acknowledgements
upon receipt of the primitive, and the transport user wait for the acknowledgement before issuing
any other primitives:

– Successful

Correct acknowledgement of the primitive is indicated via the T_OK_ACK primitive described in
Section 2.1.2.5 [T OK ACK], page 15.

– Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in Section 2.1.2.4
[T ERROR ACK], page 14. The allowable errors are as follows:

[TBADF] This indicates that the response queue pointer was illegal.

[TBADOPT] This indicates that the options were in an incorrect format, or they contained
illegal information.

2014-10-25 17

Chapter 2: Transport Provider Interface

[TACCES] This indicates that the user did not have proper permissions for the use of the
options or response id.

[TOUTSTATE]

The primitive would place the transport interface out of state.

[TBADDATA]

The amount of user data specified was illegal.

[TBADSEQ] The sequence number specified in the primitive was incorrect or illegal.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the
primitive.

[TRESADDR]

The transport provider requires that the responding stream is bound to the same
address as the stream on which the connection indication was received.

[TBADADDR]

This indicates that the protocol address was in an incorrect format or the address
contained illegal information.

2.2.1.3 T DISCON REQ - disconnect request.

This primitive requests that the transport provider deny a request for connection, or disconnect an
existing connection. The format of this message is one M_PROTO message block possibly followed by
one or more M_DATA message blocks if there is any user data specified by the transport user. The
format of the M_PROTO message block is as follows:

struct T_discon_req {

long PRIM_type; /* always T_DISCON_REQ */

long SEQ_number; /* sequence number */

}

Where PRIM type identifies the primitive type. SEQ number identifies the outstanding connect
indication that is to by denied. If the disconnect request is disconnecting an already existing con-
nection, then the value of SEQ number will be ignored.

This primitive requires the transport provider to generate the following acknowledgement upon
receipt of the primitive, and the transport user must wait for the acknowledgement prior to issuing
any other primitives:

– Successful

Correct acknowledgement of the primitive is indicated via the T_OK_ACK primitive described in
Section 2.1.2.5 [T OK ACK], page 15.

– Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in Section 2.1.2.4
[T ERROR ACK], page 14. The allowable errors are as follows:

[TOUTSTATE]

The primitive would place the transport interface out of state.

[TBADDATA]

The amount of user data specified was illegal.

[TBADSEQ] The sequence number specified in the primitive was incorrect or illegal.

[TSYSERR] A system error has occurred and the UNIXR© System error is indicated in the
primitive.

18 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

2.2.1.4 T DATA REQ - data request.

This primitive indicates to the transport provider that this message contains a transport interface
data unit. One or more transport interface data units form a transport service data unit (TSDU).2

This primitive has a mechanism that indicates the beginning and end of a transport service data
unit. However, not all transport providers support the concept of a transport service data unit,
as noted in Section 2.1.2.1 [T INFO ACK], page 10. The format of the message is one M_PROTO

message block followed by zero or more M_DATA message blocks where each

M_DATA message block contains zero or more bytes of data. The format of the M_PROTO message
block is as follows:

struct T_data_req {

long PRIM_type; /* always T_DATA_REQ */

long MORE_flag; /* indicates more data in TSDU */

}

Where PRIM type identifies the primitive type. MORE flag when greater than zero, indicates that
the next T_DATA_REQ primitive is also part of this transport service data unit.

The transport provider must also recognize a message of one or more M_DATA message blocks without
the leading M_PROTO message block as a T_DATA_REQ primitive. This message type will be initiated
from the WRITE(BA OS) operating system service routine. In this case there are no implied
transport service data unit boundaries, and the transport provider may view this message type as
a self contained transport service data unit. If these two types of messages are intermixed, then
transport service data boundaries may be lost.

This primitive does not require any acknowledgements, although it may generate a fatal error. This
is indicated via a M_ERROR message type which results in the failure of all operating system service
routines on the stream. The allowable errors are as follows:

[EPROTO]

This indicates one of the following unrecoverable protocol conditions:

— The transport service interface was found to be in an incorrect state. If the inter-
face is in the T_IDLE state when the provider receives the T_DATA_REQ primitive,
then the transport provider should just drop the message without generating a
fatal error.

— The amount of transport user data associated with the primitive defines a trans-
port service data unit larger than that allowed by the transport provider.

2.2.1.5 T EXDATA REQ - expedited data request.

This primitive indicates to the transport provider that this message contains an expedited transport
interface data unit. One or more expedited transport interface data units form an expedited trans-
port service data unit.3 This primitive has a mechanism which indicates the beginning and end of
an expedited transport service data unit. However, not all transport providers support the concept
of an expedited transport service data unit, as noted in Section 2.1.2.1 [T INFO ACK], page 10.
The format of the message is one M_PROTO message block followed by one or more M_DATA message
blocks containing at least one byte of data. The format of the M_PROTO message block is as follows:

struct T_exdata_req {

long PRIM_type; /* always T_EXDATA_REQ */

2 The maximum transport service data unit size allowed by the transport provider is indicated to the transport
user via the T_INFO_ACK primitive.

3 The maximum size of a expedited transport service data unit is indicated to the transport user via
theT INFO ACK primitive.

2014-10-25 19

Chapter 2: Transport Provider Interface

long MORE_flag; /* indicates more data in ETSDU */

}

Where PRIM type identifies the primitive type. MORE flag when greater than zero indicates that
the next T_EXDATA_REQ primitive is also part of this expedited transport service data unit.

This primitive does not require any acknowledgements, although it may generate a fatal error. This
is indicated via a M_ERROR message type which results in the failure of all operating system service
routines on the stream. The allowable errors are as follows:

[EPROTO] This indicates one of the following unrecoverable protocol conditions:

— The transport service interface was found to be in an incorrect state. If the inter-
face is in the T_IDLE state when the provider receives the T_EXDATA_REQ primitive,
then the transport provider should just drop the message without generating a
fatal error.

— The amount of transport user data associated with the primitive defines an ex-
pedited transport service data unit larger than that allowed by the transport
provider.

2.2.1.6 T ORDREL REQ - orderly release request.

This primitive indicates to the transport provider that the user is finished sending data. This
primitive is only supported by the transport provider if it is of type T_COTS_ORD. The format of the
message is one M_PROTO message block. The format of the M_PROTO message block is as follows:

struct T_ordrel_req {

long PRIM_type; /* always T_ORDREL_REQ */

}

Where PRIM type identifies the primitive type.

This primitive does not require any acknowledgements, although it may generate a fatal error. This
is indicated via a M_ERROR message type which results in the failure of all operating system service
routines on the stream. The allowable errors are as follows:

[EPROTO] This indicates one of the following unrecoverable protocol conditions:

— The primitive would place the interface in an incorrect state.

2.2.2 Provider-Originated Primitives

The following describes the format of the transport primitives which are generated by the transport
provider.

2.2.2.1 T CONN IND - connect indication.

This primitive indicates to the transport user that a connect request to the user has been made by
the user at the specified source address. The format of this message is one M_PROTO message block
followed by zero or more M_DATA blocks if any user data is associated with the primitive. The format
of the M_PROTO message block is as follows:

struct T_conn_ind {

long PRIM_type; /* always T_CONN_IND */

long SRC_length; /* source addr length - see note in sec.

1.4 */

long SRC_offset; /* source addr offset */

long OPT_length; /* options length - see note in sec. 1.4 */

long OPT_offset; /* options offset */

long SEQ_number; /* sequence number - see note in sec. 1.4 */

}

20 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

Where PRIM type identifies the primitive type. SRC length is the length of the source address
and SRC offset is the offset from the beginning of the M_PROTO message block where the source
address begins. Similarly, OPT length and OPT offset describe the location of the requested options
associated with the primitive. SEQ number should bean unique number other than ‘-1’ to identify
the connect indication. The proper alignment of the source address and options in the M_PROTO

message block is not guaranteed.

2.2.2.2 T CONN CON - connection confirm.

This primitive indicates to the user that a connect request has been confirmed on the specified
responding address. The format of this message is one M_PROTO message block followed by zero or
more M_DATA blocks if any user data is associated with the primitive. The format of the M_PROTO

message block is as follows:
struct T_conn_con {

long PRIM_type; /* always T_CONN_CON */

long RES_length; /* responding addr length - see note in

sec. 1.4 */

long RES_offset; /* responding addr offset */

long OPT_length; /* options length - see note in sec. 1.4 */

long OPT_offset; /* options offset */

}

Where PRIM type identifies the primitive type. RES length is the length of the responding address
that the connection was accepted on and RES offset is the offset from the beginning of the M_PROTO
message block where the responding address begins. Similarly, OPT length and OPT offset describe
the size and location of the confirmed options associated with the primitive. The proper alignment
of the responding address and options in the M_PROTO message block is not guaranteed.

2.2.2.3 T DISCON IND - disconnect indication.

This primitive indicates to the user that either a request for connection has been denied or an
existing connection has been disconnected. The format of this message is one M_PROTO message
block possibly followed by one or more M_DATA message blocks if there is any user data associated
with the primitive. The format of the M_PROTO message block is as follows:

struct T_discon_ind {

long PRIM_type; /* always T_DISCON_IND */

long DISCON_reason; /* disconnect reason - see note in sec.

1.4 */

long SEQ_number; /* sequence number - see note in sec. 1.4 */

}

Where PRIM type identifies the primitive type and DISCON reason is the reason for disconnect.
The reason codes are protocol specific. SEQ number is the sequence number which identifies which
connect indication was denied, or it is ‘-1’ if the provider is disconnecting an existing connection.
The SEQ number is only meaningful when this primitive is sent to a passive user who has the
corresponding connect indication outstanding. It allows the transport user to identify which of its
outstanding connect indications is associated with the disconnect.

2.2.2.4 T DATA IND - data indication.

This primitive indicates to the transport user that this message contains a transport interface data
unit. One or more transport interface data units form a transport service data unit. This primitive
has a mechanism which indicates the beginning and end of a transport service data unit. How-
ever, not all transport providers support the concept of a transport service data unit, as noted in
Section 2.1.2.1 [T INFO ACK], page 10. The format of the message is one M_PROTO message block

2014-10-25 21

Chapter 2: Transport Provider Interface

followed by zero or more M_DATA message blocks where each M_DATA message block, except for the
last, must contain at least one byte of data. The format of the M_PROTO message block is as follows:

struct T_data_ind {

long PRIM_type; /* always T_DATA_IND */

long MORE_flag; /* indicates more data in TSDU */

}

Where PRIM type identifies the primitive type. MORE flag , when greater than zero, indicates
that the next T_DATA_IND primitive is also part of this transport service data unit. If a TSDU
spans multiple T_DATA_IND message blocks, then an ETSDU may be placed in between two T_DATA_
IND message blocks. Once an ESTDU is started, then the ETSDU must be completed before any
T_DATA_IND message blocks defining a TSDU is resumed.

2.2.2.5 T EXDATA IND - expedited data indication.

This primitive indicates to the transport user that this message contains an expedited transport
interface data unit. One or more expedited transport interface data units form an expedited trans-
port service data unit. This primitive has a mechanism which indicates the beginning and end of
an expedited transport service data unit. However, not all transport providers support the concept
of an expedited transport service data unit, as noted in Section 2.1.2.1 [T INFO ACK], page 10.
The format of the message is one M_PROTO message block followed by one or more M_DATA message
blocks containing at least one byte of data. The format of the M_PROTO message block is as follows:

struct T_exdata_ind {

long PRIM_type; /* always T_EXDATA_IND */

long MORE_flag; /* indicates more data in ETSDU */

}

Where PRIM type identifies the primitive type. MORE flag , when greater than zero, indicates that
the next T_EXDATA_IND primitive is also part of this expedited transport service data unit.

2.2.2.6 T ORDREL IND - orderly release indication.

This primitive indicates to the transport user that the user on the other side of the connection is
finished sending data. This primitive is only supported by the transport provider if it is of type
T_COTS_ORD. The format of the message is one M_PROTO message block. The format of the M_PROTO
message block is as follows:

struct T_ordrel_ind {

long PRIM_type; /* always T_ORDREL_IND */

}

Where PRIM type identifies the primitive type.

22 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

2.3 Connectionless-Mode Transport Primitives

The following transport primitives pertain only to the connectionless-mode transport service.

2.3.1 User-Originated Primitives

2.3.1.1 T UNITDATA REQ - unitdata request.

This primitive requests that the transport provider send the specified datagram to the specified
destination. The format of the message is one M_PROTO message block followed by zero or more
M_DATA message blocks where each M_DATA message block contains zero or more bytes of data. The
format of the M_PROTO message block is as follows:

struct T_unitdata_req {

long PRIM_type; /* always T_UNITDATA_REQ */

long DEST_length; /* dest addr length */

long DEST_offset; /* dest addr offset */

long OPT_length; /* options length */

long OPT_offset; /* options offset */

}

Where PRIM type identifies the primitive type. DEST length is the length of the destination
address and DEST offset is the offset from the beginning of the M_PROTO message block where the
destination address begins. Similarly, OPT length and OPT offset describe the location of the
requested options associated with the primitive. The proper alignment of the destination address
and options in the M_PROTO message block is not guaranteed. The destination address and options in
the M_PROTO message block are, however, aligned the same as they were received from the transport
user.

This primitive does not require any acknowledgement. If an non-fatal error occurs, it is the respon-
sibility of the transport provider to report it via the T_UDERROR_IND indication. Fatal errors are
indicated via a M_ERROR message type which results in the failure of all operating system service
routines on the stream. The allowable fatal errors are as follows:

[EPROTO] This indicates one of the following unrecoverable protocol conditions:

— The transport service interface was found to be in an incorrect state.

— The amount of transport user data associated with the primitive defines an trans-
port service data unit larger than that allowed by the transport provider.

2.3.2 Provider-Originated Primitives

2.3.2.1 T UNITDATA IND - unitdata indication.

This primitive indicates to the transport user that a datagram has been received from the specified
source address. The format of the message is one M_PROTO message block followed by zero or more
M_DATA message blocks where each M_DATA message block contains at least one byte of data. The
format of the M_PROTO message block is as follows:

struct T_unitdata_ind {

long PRIM_type; /* always T_UNITDATA_IND */

long SRC_length; /* source addr length - see note in sec.

1.4 */

long SRC_offset; /* source addr offset */

long OPT_length; /* options length - see note in sec. 1.4 */

long OPT_offset; /* options offset */

}

2014-10-25 23

Chapter 2: Transport Provider Interface

Where PRIM type identifies the primitive type. SRC length is the length of the source address
and SRC offset is the offset from the beginning of the M_PROTO message block where the source
address begins. Similarly, OPT length and OPT offset describe the location of the requested options
associated with the primitive. The proper alignment of the source address and options in the M_PROTO
message block is not guaranteed.

2.3.2.2 T UDERROR IND - unitdata error indication.

This primitive indicates to the transport user that a datagram with the specified destination address
and options produced an error. The format of this message is one M_PROTO message block. The
format of the M_PROTO message block is as follows:

struct T_uderror_ind {

long PRIM_type; /* always T_UDERROR_IND */

long DEST_length; /* destination addr length - see note in

sec. 1.4 */

long DEST_offset; /* destination addr offset */

long OPT_length; /* options length - see note in sec. 1.4 */

long OPT_offset; /* options offset */

long ERROR_type; /* error type */

}

Where PRIM type identifies the primitive type. DEST length is the length of the destination
address and DEST offset is the offset from the beginning of the M_PROTO message block where the
destination address begins. Similarly, OPT length and OPT offset describe the location of the
requested options associated with the primitive. ERROR type defines the protocol dependent error
code. The proper alignment of the destination address and options in the M_PROTO message block is
not guaranteed.

24 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

2.4 Note about Structure Elements

Although the structure elements in the Transport Provider Interface are declared as long data types,
the value the transport provider assigns to those elements that refer to this note must not be greater
than the maximum value of an int data type because the corresponding user level structure element
is declared as an int.

2014-10-25 25

Chapter 2: Transport Provider Interface

2.5 Overview of Error Handling Capabilities

There are two error handling facilities available to the transport user: one to handle non-fatal errors
and one to handle fatal errors.

2.5.1 Non-fatal Errors

The non-fatal errors are those that a transport user can correct, and are reported in the form of an
error acknowledgement to the appropriate primitive in error. Only those primitives which require
acknowledgements may generate a non-fatal error acknowledgement. These acknowledgements al-
ways report a syntactical error in the specified primitive when the transport provider receives the
primitive. The primitive descriptions above define those primitives and rules regarding the acknowl-
edgement of them. These errors are reported to the transport user via the T_ERROR_ACK primitive,
and give the transport user the option of reissuing the transport service primitive that caused the
error. The T_ERROR_ACK primitive also indicates to the transport user that no action was taken
by the transport provider upon receipt of the primitive which caused the error. These errors do
not change the state of the transport service interface as seen by the transport user. The state of
the interface after the issuance of a T_ERROR_ACK primitive should be the same as it was before the
transport provider received the interface primitive that was in error. The allowable errors that can
be reported on the receipt of a transport initiated primitive are presented in the description of the
appropriate primitives.

2.5.2 Fatal Errors

Fatal errors are those which can not be corrected by the transport user, or those errors which result
in an uncorrectable error in the interface or in the transport provider.

The most common of these errors are listed under the appropriate primitives. The transport provider
should issue fatal errors only if the transport user can not correct the condition which caused the
error or if the transport provider has no means of reporting a transport user correctable error. If the
transport provider detects an uncorrectable non-protocol error internal to the transport provider,
the provider should issue a fatal error to the user.

Fatal errors are indicated to the transport user via the STREAMS message type M_ERROR with the
UNIXR© System error [EPROTO]. This is the only type of error that the transport provider should
use to indicate a fatal protocol error to the transport user. The message M_ERROR will result in the
failure of all the operating system service routines on the stream. The only way for a user to recover
from a fatal error is to ensure that all processes close the file associated with the stream. At that
point, the user may reopen the file associated with the stream.

26 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

2.6 Transport Service Interface Sequence of Primitives

The allowable sequence of primitives are described in the state diagrams and tables in section 4
for both the connection-mode and connectionless-mode transport services. The following are rules
regarding the maintenance of the state of the interface:

• It is the responsibility of the transport provider to keep record of the state of the interface as
viewed by the transport user.

• The transport provider must never issue a primitive that places the interface out of state.

• The uninitialized state of a stream is the initial and final state, and it must be bound (see
T_BIND_REQ primitive) before the transport provider may view it as an active stream.

• If the transport provider sends a M_ERROR upstream, it should also drop any further messages
received on its write side of the stream. The following rules apply only to the connection-mode
transport services.

• A transport connection release procedure can be initiated at any time during the transport
connection establishment or data transfer phase.

• The state tables for the connection-mode transport service providers include the management
of the sequence numbering when a transport provider sends multiple T_CONN_IND requests
without waiting for the response of the previously sent indication. It is the responsibility of
the transport providers not to change state until all the indications have been responded to,
therefore the provider should remain in the indications have been responded to.

• The only time the state of a transport service interface of a stream may be transferred to
another stream is when it is indicated in a T_CONN_RES primitive. The following rules then
apply to the cooperating streams:

— The stream which is to accept the current state of the interface must be bound to an
appropriate protocol address and must be in the idle state.

— The user transferring the current state of a stream must have correct permissions for the
use of the protocol address bound to the accepting stream.

— The stream which transfers the state of the transport interface must be placed into an
appropriate state after the completion of the transfer.

2014-10-25 27

Chapter 2: Transport Provider Interface

2.7 Precedence of Transport Interface Primitives on a Stream

The following rules apply to the precedence of transport interface primitives with respect to their
position on a stream:1

• The transport provider has responsibility for determining precedence on its stream write queue,
as per the rules in section 5. The appendix specifies the rules for precedence for both the
connection-mode and connectionless-mode transport services.

• The transport user has responsibility for determining precedence on its stream read queue, as
per the rules in section 5.

• All primitives on the stream are assumed to be placed on the queue in the correct sequence as
defined above. The following rules apply only to the connection-mode transport services.

• There is no guarantee of delivery of user data once a T_DISCON_REQ primitive has been issued.

1 The stream queue which contains the transport user initiated primitives is referred to as the stream write
queue. The stream queue which contains the transport provider initiated primitives is referred to as the
stream read queue.

28 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Provider Interface

2.8 Rules for Flushing Queues

The following rules pertain to flushing the stream queues. No other flushes should be needed to keep
the queues in the proper condition.

• The transport providers must be aware that they will receive M_FLUSH messages from upstream.
These flush requests are issued to ensure that the providers receive certain messages and prim-
itives. It is the responsibility of the providers to act appropriately as deemed necessary by the
providers.

• The transport provider must send up a M_FLUSH message to flush both the read and write
queues after receiving a successful T_UNBIND_REQ message and prior to issuing the T_OK_ACK

primitive.

The following rules pertain only to the connection-mode transport providers.

• If the interface is in the T_DATA_XFER, T_WIND_ORDREL or T_WACK_ORDREL state, the transport
provider must send up a M_FLUSH message to flush both the read and write queues before
sending up a T_DISCON_IND.

• If the interface is in the T_DATA_XFER, T_WIND_ORDREL or T_WACK_ORDREL state, the transport
provider must send up a M_FLUSHmessage to flush both the read and write queues after receiving
a successful T_DISCON_REQ message and before issuing the T_OK_ACK primitive.

2014-10-25 29

Transport Provider Interface Mapping of Transport Primitives to OSI

3 Mapping of Transport Primitives to OSI

The following table maps those transport primitives as seen by the transport provider to the
STREAMS message types used to realize the primitives and to the ISO IS 8072 and IS8072/DAD1
transport service definition primitives.� �

Transport Stream ISO 8072 Transport

Primitives Message Types Primitives

T_CONN_REQ M_PROT O T-CONNECT request

T_CONN_IND M_PROT O T-CONNECT indication

T_CONN_RES M_PROT O T-CONNECT response

T_CONN_CON M_PROT O T-CONNECT confirm

T_DAT A_REQ M_PROT O T-DATA request

T_DAT A_IND M_PROT O T-DATA indication

T_EXDAT A_REQ M_PROT O T-EXPEDITED-DAT A request

T_EXDAT A_IND M_PROT O T-EXPEDITED-DAT A indication

T_DISCON_REQ M_PROT O T-DISCONNECT request

T_DISCON_IND M_PROT O T-DISCONNECT indication

T_UNITDAT A_REQ M_PROT O T-UNITDAT A request

T_UNITDAT A_IND M_PROT O T-UNITDAT A indication

T_ORDREL_REQ M_PROT O not defined in ISO

T_ORDREL_IND M_PROT O not defined in ISO

T_BIND_REQ M_PROT O not defined in ISO

T_BIND_ACK M_PCPROT O not defined in ISO

T_UNBIND_REQ M_PROT O not defined in ISO

T_OK_ACK M_PCPROT O not defined in ISO

T_ERROR_ACK M_PCPROT O not defined in ISO

T_INFO_REQ M_PCPROT O not defined in ISO

T_INFO_ACK M_PCPROT O not defined in ISO

T_UDERR_IND M_PROT O not defined in ISO

T_OPTMGMT_REQ M_PROT O not defined in ISO

T_OPTMGMT_ACK M_PCPROT O not defined in ISO

T_ADDR_REQ M_PROT O not defined in ISO

T_ADDR_ACK M_PCPROT O not defined in ISO

Figure 3.1: Mapping ISO IS 8072 and IS 8072/DAD1 to Kernel-level Transport Service Primitives
 	

2014-10-25 31

Transport Provider Interface Allowable Sequence of Transport Service Primitives

4 Allowable Sequence of Transport Service Primitives

The following tables describe the possible events that may occur on the interface and the possible
states as viewed by the transport user that the interface may enter due to an event. The events map
directly to the transport service interface primitives as described in section 2.� �

Possible States

state abbreviation description service type

sta_0 unbnd unbound T_COTS, T_COTS_ORD,

T_CLTS

sta_1 w_ack b_req aw aiting acknowledgement of

T_BIND_REQ

T_COTS, T_COTS_ORD,

T_CLTS

sta_2 w_ack u_req aw aiting acknowledgement of

T_UNBIND_REQ

T_COTS, T_COTS_ORD,

T_CLTS

sta_3 idle idle - no connection T_COTS, T_COTS_ORD,

T_CLTS

sta_4 w_ack op_req aw aiting acknowledgement of

T_OPTMGMT_REQ

T_COTS, T_COTS_ORD,

T_CLTS

sta_5 w_ack c_req aw aiting acknowledgement of

T_CONN_REQ

T_COTS, T_COTS_ORD

sta_6 w_con c_req aw aiting confirmation of

T_CONN_REQ

T_COTS, T_COTS_ORD

sta_7 w_res c_ind aw aiting response of

T_CONN_IND

T_COTS, T_COTS_ORD

sta_8 w_ack c_res aw aiting acknowledgement of

T_CONN_RES

T_COTS, T_COTS_ORD

sta_9 data_t data transfer T_COTS, T_COTS_ORD

sta_10 w_ind or_rel aw aiting T_ORDREL_IND T_COTS_ORD

sta_11 w_req or_rel aw aiting T_ORDREL_REQ T_COTS_ORD

sta_12 w_ack dreq6 aw aiting acknowledgement of

T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_13 w_ack dreq7 aw aiting acknowledgement of

T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_14 w_ack dreq9 aw aiting acknowledgement of

T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_15 w_ack dreq10 aw aiting acknowledgement of

T_DISCON_REQ

T_COTS, T_COTS_ORD

sta_16 w_ack dreq11 aw aiting acknowledgement of

T_DISCON_REQ

T_COTS, T_COTS_ORD

Figure 4.1: Kernel Level Transport Interface States
 	

2014-10-25 33

Chapter 4: Allowable Sequence of Transport Service Primitives

Variables and Outputs

The following describes the variables and outputs used in the state tables.

variable description

q queue pair pointer of current stream

rq queue pair pointer of responding stream as described in the

T_CONN_RES primitive

outcnt counter for the number of outstanding connection indications not

responded to by the transport user

Table 4.1: State Table Variables

output description

[1] outcnt = 0

[2] outcnt = outcnt + 1

[3] outcnt = outcnt - 1

[4] pass connection to queue as indicated in the T_CONN_RES

primitive

Table 4.2: State Table Outputs

34 Version 1.1 Rel. 7.20141001

Transport Provider Interface Allowable Sequence of Transport Service Primitives

Outgoing Events

The following outgoing events are those which are initiated from the transport service user. They
either make requests of the transport provider or respond to an event of the transport provider.� �

ev ent description service type

bind_req bind request T_COTS, T_COTS_ORD, T_CLTS

unbind_req unbind request T_COTS, T_COTS_ORD, T_CLTS

optmgmt_req options mgmt request T_COTS, T_COTS_ORD, T_CLTS

conn_req connection request T_COTS, T_COTS_ORD

conn_res connection response T_COTS, T_COTS_ORD

discon_req disconnect request T_COTS, T_COTS_ORD

data_req data request T_COTS, T_COTS_ORD

exdata_req expedited data request T_COTS, T_COTS_ORD

ordrel_req orderly release request T_COTS_ORD

unitdata_req unitdata request T_CLTS

Figure 4.2: Kernel Level Transport Interface Outgoing Events
 	

2014-10-25 35

Chapter 4: Allowable Sequence of Transport Service Primitives

Incoming Events

The following incoming events are those which are initiated from the transport provider. They are
either confirmations of a request or are indications to the transport user that an event has occurred.� �

ev ent description service type

bind_ack bind acknowledgement T_COTS, T_COTS_ORD, T_CLTS

optmgmt_ack options mgmt acknowledgement T_COTS, T_COTS_ORD, T_CLTS

error_ack error acknowledgement T_COTS, T_COTS_ORD, T_CLTS

ok_ack1 ok acknowledgement outcnt == 0 T_COTS, T_COTS_ORD, T_CLTS

ok_ack2 ok acknowledgement outcnt == 1, q

== rq

T_COTS, T_COTS_ORD,

ok_ack3 ok acknowledgement outcnt == 1, q

!= rq

T_COTS, T_COTS_ORD,

ok_ack4 ok acknowledgement outcnt > 1 T_COTS, T_COTS_ORD,

conn_ind connection indication T_COTS, T_COTS_ORD

conn_con connection confirmation T_COTS, T_COTS_ORD

data_ind data indication T_COTS, T_COTS_ORD

exdata_ind expedited data indication T_COTS, T_COTS_ORD

ordrel_ind orderly release indication T_COTS_ORD

discon_ind1 disconnect indication outcnt == 0 T_COTS, T_COTS_ORD

discon_ind2 disconnect indication outcnt == 1 T_COTS, T_COTS_ORD

discon_ind3 disconnect indication outcnt > 1 T_COTS, T_COTS_ORD

pass_conn pass connection T_COTS, T_COTS_ORD

unitdata_ind unitdata indication T_CLTS

uderror_ind unitdata error indication T_CLTS

Figure 4.3: Kernel Level Transport Interface Incoming Events
 	

36 Version 1.1 Rel. 7.20141001

Transport Provider Interface Allowable Sequence of Transport Service Primitives

Transport Service State Tables

The following tables describes the possible next states the interface may enter given a current state
and event.

The contents of each box represent the next state given the current state (column) and the current
incoming or outgoing event (row). An empty box represents a state/event combination that is
invalid. Along with the next state, each box may include an action. The transport provider must
take the specific actions in the order specified in the state table.

state sta_0 sta_1 sta_2 sta_3 sta_4

unbnd w_ack w_ack idle w_ack

ev ent b_req u_req op_req

bind_req sta_1

unbind_req sta_2

optmgmt_req sta_4

bind_ack sta_3

[1]

optmgmt_ack sta_3

error_ack sta_0 sta_3 sta_3

ok_ack1 sta_0

Table 4.3: Initialization State Table

2014-10-25 37

Chapter 4: Allowable Sequence of Transport Service Primitives

state 0 3 5 6 7 8 9 10 11 12 13 14 15 16

ev ent

conn_req 5

conn_res 8

discon_req 12 13 14 15 16

data_req 9 11

exdata_req 9 11

ordrel_req** 10 3

conn_ind 7 7

conn_con 9

data_ind 9 10

exdata_ind 9 10

ordrel_ind** 11 3

discon_ind1 3 3 3 3

discon_ind2 3

[3]

discon_ind3 7

[3]

error_ack 3 7 6 7 9 10 11

ok_ack1 6 3 3 3 3

ok_ack2 9 3

[3] [3]

ok_ack3 3 3

[3] [3]

[4]

ok_ack4 7 7

[3] [3]

[4]

pass_conn 9 9

** Only supported if service type T_COTS_ORD.

Table 4.4: Connection/Release/Data-Transfer State Table for Connection Oriented Service

state sta_3

ev ent idle

unitdata_req sta_3

unitdata_ind sta_3

uderror_ind sta_3

Table 4.5: Data-Transfer State Table for Connectionless Service

38 Version 1.1 Rel. 7.20141001

Transport Provider Interface Transport Primitive Precedence

5 Transport Primitive Precedence

The following describes the precedence of the transport primitives for both the stream1 write and
read queues.

Object X 1 2 3 4 5 6 7 8 9 10 11 12

Object Y

1 t_addr_req

2 t_conn_req 4

3 t_conn_res 3

4 t_discon_req

5 t_data_req 5 1 2 1

6 t_exdata_req 5 1 1 1

7 t_bind_req

8 t_unbind_req

9 t_info_req

10 t_unitdata_req 1

11 t_optmgmt_req

12 t_ordrel_req 5

Ke y

blank not applicable / queue should be empty

1 X has no precedence over Y

2 X has precedence over Y

3 X has precedence over Y and Y must be removed

4 X has precedence over Y and both X and Y must be removed

5 X may have precedence over Y (choice of user) and if X does, then it is

the same as 3

Table 5.1: Stream Write Queue Precedence Table

1 The stream queue which contains the transport user initiated primitives is referred to as the stream write
queue. The stream queue which contains the transport provider initiated primitives is referred to as the
stream read queue.

2014-10-25 39

Chapter 5: Transport Primitive Precedence

Object X 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Object Y

1 t_addr_ack

2 t_conn_ind 4

3 t_conn_con 3 1 1

4 t_discon_ind 1 2 2

5 t_data_ind 5 1 2 1 1

6 t_exdata_ind 5 1 1 1 1

7 t_info_ack

8 t_bind_ack 1

9 t_error_ack 1 1 1 1 1

10 t_ok_ack 1 1 1 1 1

11 t_unitdata_ind 2 1 2 2

12 t_uderror_ind 1 1 1 1

13 t_optmgmt_ack 1 1 1

14 t_ordrel_ind 1 5 2 2

Ke y

blank not applicable / queue should be empty

1 X has no precedence over Y

2 X has precedence over Y

3 X has precedence over Y and Y must be removed

4 X has precedence over Y and both X and Y must be removed

5 X may have precedence over Y (choice of user) and if X does, then it is

the same as 3

Table 5.2: Stream Read Queue Precedence Table

40 Version 1.1 Rel. 7.20141001

Transport Provider Interface References

References

2014-10-25 41

Transport Provider Interface Index

Index

A
ADDR_length . 7, 12
ADDR_offset . 7, 12
ADDR_size . 11
Allowable sequence of transport service primitives

. 33

B
Bind protocol address . 7, 12

C
CDATA_size . 11, 12
CLTS provider-originated primitives 23
CLTS user-originated primitives 23
Common transport primitives 7
CONIND_number . 7, 8, 12, 13
Connect . 16, 17, 20, 21
Connection-mode transport primitives 16
Connectionless-mode transport primitives 23
CORRECT_prim . 15
COTS provider-originated primitives 20
COTS user-originated primitives 16
CURRENT_state . 11

D
Data transfer . 19, 21, 23
DDATA_size . 11, 12
DEST_length . 16, 23, 24
DEST_offset . 16, 23, 24
DISCON_reason . 21
Disconnect . 18, 21

E
EPROTO . 19, 20, 23, 26
Error acknowledgement . 14
ERROR_prim . 14
ERROR_type . 24
ETSDU_size . 11, 12
Expedited data transfer . 19, 22

F
Fatal errors . 26

I
Introduction . 3

L
LOCADDR_length . 15
LOCADDR_offset . 15

M
M_DATA 5, 6, 16, 17, 18, 19, 20, 21, 22, 23
M_ERROR . 19, 20, 23, 26, 27
M_FLUSH . 29
M_PCPROTO 5, 7, 10, 12, 13, 14, 15
M_PROTO . . . 5, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22,

23, 24
Management provider-originated primitives 10
Management user-originated primitives 7
Mapping of transport primitives to osi 31
MGMT_flags . 9, 13, 14
MORE_flag . 19, 20, 22

N
Non-fatal errors . 26
Note about structure elements 25

O
OPT_length 9, 13, 16, 17, 21, 23, 24
OPT_offset 9, 13, 16, 17, 21, 23, 24
OPT_size . 11
Options management . 9, 13
Orderly release . 20, 22
Overview of error handling capabilities 26

P
Precedence of transport interface primitives on a

stream . 28
PRIM_type . . . 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24
Protocol addresses . 10, 15
Protocol information . 10
PROVIDER_flag . 12

Q
QUEUE_ptr . 17

R
REMADDR_length . 15
REMADDR_offset . 15
RES_length . 21
RES_offset . 21

2014-10-25 43

Index

Rules for flushing queues . 29

S
SENDZERO . 12
SEQ_number . 17, 18, 21
SERV_type . 11
SRC_length . 21, 24
SRC_offset . 21, 24
Success acknowledgement . 15

T
T_addr_ack . 15
T_ADDR_ACK . 10, 12
T_ADDR_ACK . 15
T_addr_req . 10
T_ADDR_REQ . 10
T_ADDR_REQ . 12
T_bind_ack . 12
T_BIND_ACK . 8
T_BIND_ACK . 12
T_bind_req . 7
T_BIND_REQ . 7
T_BIND_REQ . 12, 13, 27
T_CHECK . 9, 10, 13, 14
T_CLTS . 11, 12
T_conn_con . 21
T_CONN_CON . 21
T_conn_ind . 20
T_CONN_IND . 20
T_CONN_IND . 27
T_conn_req . 16
T_CONN_REQ . 16
T_conn_res . 17
T_CONN_RES . 17
T_CONN_RES . 27
T_COTS . 11
T_COTS_ORD . 11, 20, 22
T_CURRENT . 9, 10, 14
T_data_ind . 22
T_DATA_IND . 21
T_DATA_IND . 22
T_data_req . 19
T_DATA_REQ . 11, 19
T_DATA_XFER . 15, 29
T_DEFAULT . 9, 13
T_discon_ind . 21
T_DISCON_IND . 16
T_DISCON_IND . 21
T_DISCON_IND . 29
T_discon_req . 18
T_DISCON_REQ . 18
T_DISCON_REQ . 28, 29
T_error_ack . 14
T_ERROR_ACK 8, 9, 13, 14, 16, 17, 18, 26

T_exdata_ind . 22
T_EXDATA_IND . 22
T_exdata_req . 19
T_EXDATA_REQ . 11
T_EXDATA_REQ . 19
T_EXDATA_REQ . 20
T_FAILURE . 13
T_IDLE . 19, 20
T_info_ack . 10
T_INFO_ACK . 7
T_INFO_ACK . 10
T_INFO_ACK . 19
T_info_req . 7
T_INFO_REQ . 7, 10
T_NEGOTIATE . 9, 13, 14
T_ok_ack . 15
T_OK_ACK . 8
T_OK_ACK . 15
T_OK_ACK . 16, 17, 18, 29
T_optmgmt_ack . 13
T_OPTMGMT_ACK . 9, 13
T_optmgmt_req . 9
T_OPTMGMT_REQ . 9
T_OPTMGMT_REQ . 13, 14
T_ordrel_ind . 22
T_ORDREL_IND . 22
T_ordrel_req . 20
T_ORDREL_REQ . 20
T_SUCCESS . 13
T_uderror_ind . 24
T_UDERROR_IND . 23
T_UDERROR_IND . 24
T_unbind_req . 8
T_UNBIND_REQ . 8
T_UNBIND_REQ . 29
T_UNBND . 15
T_UNINIT . 15
T_unitdata_ind . 23
T_UNITDATA_IND . 23
T_unitdata_req . 23
T_UNITDATA_REQ . 23
T_WACK_ORDREL . 29
T_WIND_ORDREL . 29
TACCES . 8, 9, 14, 16, 18
TADDRBUSY . 8, 14, 17
TBADADDR . 8, 14, 16, 18
TBADDATA . 14, 17, 18
TBADF . 14, 17
TBADFLAG . 10, 14
TBADOPT . 9, 14, 17
TBADSEQ . 14, 18
TIDU_size . 11, 12
TLI_error . 14
TNOADDR . 8
TNOADDR . 14
TNOTSUPPORT . 10, 15

44 Version 1.1 Rel. 7.20141001

Transport Provider Interface Index

TOUTSTATE . 8, 9, 14, 17, 18
Transport primitive precedence 39
Transport protocol parameters 7
Transport provider interface . 5
Transport service interface sequence of primitives

. 27
TRESADDR . 15, 18
TSDU_size . 11, 12
TSYSERR . 8, 9, 10, 14, 17, 18

U

Unbind protocol address . 8

Unitdata error . 24

UNIX_error . 14

X

XPG4_1 . 12

2014-10-25 45

	Introduction
	Transport Provider Interface
	Common Transport Primitives
	User-Originated Primitives
	T_INFO_REQ - get transport protocol parameter sizes.
	T_BIND_REQ - bind protocol address request.
	T_UNBIND_REQ - unbind protocol address request.
	T_OPTMGMT_REQ - options management.
	T_ADDR_REQ - get protocol addresses request.

	Provider-Originated Primitives
	T_INFO_ACK - protocol information acknowledgement.
	T_BIND_ACK - bind protocol address acknowledgement.
	T_OPTMGMT_ACK - option management acknowledgement.
	T_ERROR_ACK - error acknowledgement.
	T_OK_ACK - success acknowledgement.
	T_ADDR_ACK - get protocol addresses acknowledgement.

	Connection-Mode Transport Primitives
	User-Originated Primitives
	T_CONN_REQ - connect request.
	T_CONN_RES - connection response.
	T_DISCON_REQ - disconnect request.
	T_DATA_REQ - data request.
	T_EXDATA_REQ - expedited data request.
	T_ORDREL_REQ - orderly release request.

	Provider-Originated Primitives
	T_CONN_IND - connect indication.
	T_CONN_CON - connection confirm.
	T_DISCON_IND - disconnect indication.
	T_DATA_IND - data indication.
	T_EXDATA_IND - expedited data indication.
	T_ORDREL_IND - orderly release indication.

	Connectionless-Mode Transport Primitives
	User-Originated Primitives
	T_UNITDATA_REQ - unitdata request.

	Provider-Originated Primitives
	T_UNITDATA_IND - unitdata indication.
	T_UDERROR_IND - unitdata error indication.

	Note about Structure Elements
	Overview of Error Handling Capabilities
	Non-fatal Errors
	Fatal Errors

	Transport Service Interface Sequence of Primitives
	Precedence of Transport Interface Primitives on a Stream
	Rules for Flushing Queues

	Mapping of Transport Primitives to OSI
	Allowable Sequence of Transport Service Primitives
	Transport Primitive Precedence
	References
	Index

