Links

GitHub

Open HUB

Quick Links

Download

STREAMS

SIGTRAN

SS7

Hardware

SCTP

Related

Package

Manual

FAQ

Manuals

sctp Manual

iperf Manual

SPG Manual

STREAMS Manual

strcompat Manual

strutil Manual

strbcm Manual

strtty Manual

strxns Manual

strxnet Manual

strsock Manual

strinet Manual

strsctp Manual

striso Manual

netperf Manual

strchan Manual

strx25 Manual

strisdn Manual

strss7 Manual

sigtran Manual

strvoip Manual

osr61 Manual

LiS Manual

Documentation

FAQ

SIGTRAN

Design

Conformance

Performance

References

Man Pages

Manuals

Papers

Home

Overview

Status

Documentation

Resources

About

News

strutil Manual

Description: OpenSS7 Online Manuals

A PDF version of this document is available here.

OpenSS7 STREAMS Utilities

OpenSS7 STREAMS Utilities Installation and Reference Manual

About This Manual

This is Edition 6, last updated 2007-06-24, of The OpenSS7 STREAMS Utilities Installation and Reference Manual, for Version 0.9.2 release 6 of the OpenSS7 STREAMS Utilities package.

Preface

Notice

This package is released and distributed under the GPL (see GNU General Public License). Please note, however, that there are different licensing terms for the manual pages and some of the documentation (derived from OpenGroup1 publications and other sources). Consult the permission notices contained in the documentation for more information.

This manual is released under the FDL (see GNU Free Documentation License) with all sections invariant.

Abstract

This manual provides a Installation and Reference Manual for OpenSS7 STREAMS Utilities.

Objective

The objective of this manual is to provide a guide for the STREAMS programmer when developing STREAMS modules, drivers and application programs for OpenSS7 STREAMS Utilities.

This guide provides information to developers on the use of the STREAMS mechanism at user and kernel levels.

STREAMS was incorporated in UNIX System V Release 3 to augment the character input/output (I/O) mechanism and to support development of communication services.

STREAMS provides developers with integral functions, a set of utility routines, and facilities that expedite software design and implementation.

Intent

The intent of this manual is to act as an introductory guide to the STREAMS programmer. It is intended to be read alone and is not intended to replace or supplement the OpenSS7 STREAMS Utilities manual pages. For a reference for writing code, the manual pages (see STREAMS(9)) provide a better reference to the programmer. Although this describes the features of the OpenSS7 STREAMS Utilities package, OpenSS7 Corporation is under no obligation to provide any software, system or feature listed herein.

Audience

This manual is intended for a highly technical audience. The reader should already be familiar with Linux kernel programming, the Linux file system, character devices, driver input and output, interrupts, software interrupt handling, scheduling, process contexts, multiprocessor locks, etc.

The guide is intended for network and systems programmers, who use the STREAMS mechanism at user and kernel levels for Linux and UNIX system communication services.

Readers of the guide are expected to possess prior knowledge of the Linux and UNIX system, programming, networking, and data communication.

Revisions

Take care that you are working with a current version of this manual: you will not be notified of updates. To ensure that you are working with a current version, contact the Author, or check The OpenSS7 Project website for a current version.

A current version of this manual is normally distributed with the OpenSS7 STREAMS Utilities package, strutil-0.9.2.6.2

Version Control

     
     strutil.texi,v
     Revision 0.9.2.13  2007/06/23 01:38:29  brian
     - updates for release
     
     Revision 0.9.2.12  2007/02/28 06:31:35  brian
     - updates and corrections, #ifdef instead of #if
     
     Revision 0.9.2.11  2006/09/18 01:07:22  brian
     - updated manuals and release texi docs
     
     Revision 0.9.2.10  2006/08/28 10:47:11  brian
     - correction
     
     Revision 0.9.2.9  2006/08/28 10:32:59  brian
     - updated references
     
     Revision 0.9.2.8  2006/08/27 12:27:15  brian
     - finalizing auto release files
     
     Revision 0.9.2.7  2006/08/26 14:46:47  brian
     - update todo documentation
     
     Revision 0.9.2.6  2006/08/26 09:19:47  brian
     - better release file generation
     
     Revision 0.9.2.5  2006/08/23 11:00:51  brian
     - added preface, corrections and updates for release
     
     Revision 0.9.2.3  2006-03-22 03:02:07 -0700  brian
     - added makefile target index
     
     Revision 0.9.2.2  2006-03-03 05:17:36 -0700  brian
     - 64-bit and SMP compatibility
     
     Revision 0.9.2.1  2005-07-09 15:59:46 -0600  brian
     - added base files
     
     Revision 0.9  2005-07-09 15:59:46 -0600  brian
     file strutil.texi was initially added on branch OpenSS7-0_9_2.
     

ISO 9000 Compliance

Only the TeX, texinfo, or roff source for this manual is controlled. An opaque (printed, postscript or portable document format) version of this manual is an UNCONTROLLED VERSION.

Disclaimer

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all implied warranties of merchantability, fitness for a particular purpose, non-infringement, or title; that the contents of the manual are suitable for any purpose, or that the implementation of such contents will not infringe on any third party patents, copyrights, trademarks or other rights. In no event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with any use of this manual or the performance or implementation of the contents thereof.

OpenSS7 Corporation reserves the right to revise this software and documentation for any reason, including but not limited to, conformity with standards promulgated by various agencies, utilization of advances in the state of the technical arts, or the reflection of changes in the design of any techniques, or procedures embodied, described, or referred to herein. OpenSS7 Corporation is under no obligation to provide any feature listed herein.

U.S. Government Restricted Rights

If you are licensing this Software on behalf of the U.S. Government ("Government"), the following provisions apply to you. If the Software is supplied by the Department of Defense ("DoD"), it is classified as "Commercial Computer Software" under paragraph 252.227-7014 of the DoD Supplement to the Federal Acquisition Regulations ("DFARS") (or any successor regulations) and the Government is acquiring only the license rights granted herein (the license rights customarily provided to non-Government users). If the Software is supplied to any unit or agency of the Government other than DoD, it is classified as "Restricted Computer Software" and the Government's rights in the Software are defined in paragraph 52.227-19 of the Federal Acquisition Regulations ("FAR") (or any successor regulations) or, in the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplement to the FAR (or any successor regulations).

Acknowledgements

As with most open source projects, this project would not have been possible without the valiant efforts and productive software of the Free Software Foundation and the Linux Kernel Community.

Sponsors

Funding for completion of the OpenSS7 OpenSS7 STREAMS Utilities package was provided in part by:

OpenSS7 Corporation

Additional funding for The OpenSS7 Project was provided by:

OpenSS7 Corporation
Lockheed Martin Co.
Performance Technologies Inc.
Motorola
HOB International
Comverse Ltd.
Sonus Networks Inc.
France Telecom
SS8 Networks Inc
Nortel Networks
Verisign

Contributors

The primary contributor to the OpenSS7 OpenSS7 STREAMS Utilities package is Brian F. G. Bidulock. The following is a list of significant contributors to The OpenSS7 Project:

− Per Berquist
− John Boyd
− Chuck Winters
− Peter Courtney
− Tom Chandler
− Gurol Ackman
− Kutluk Testicioglu
− John Wenker
− Others

Authors

The authors of the OpenSS7 OpenSS7 STREAMS Utilities package include:

Brian Bidulock

See Author Index, for a complete listing and cross-index of authors to sections of this manual.

Maintainer

The maintainer of the OpenSS7 OpenSS7 STREAMS Utilities package is:

Brian Bidulock

Please send bug reports to bugs@openss7.org using the send-pr script included in the package, only after reading the BUGS file in the release, or See Problem Reports.

Web Resources

The OpenSS7 Project provides a website dedicated to the software packages released by the OpenSS7 Project.

Bug Reports

Please send bug reports to bugs@openss7.org using the send-pr script included in the OpenSS7 STREAMS Utilities package, only after reading the BUGS file in the release, or See Problem Reports. You can access the OpenSS7 GNATS database directly via the web, however, the preferred method for sending new bug reports is via mail with the send-pr script.

Mailing Lists

The OpenSS7 Project provides a number of general discussion Mailing Lists for discussion concerning the OpenSS7 OpenSS7 STREAMS Utilities package as well as other packages released by The OpenSS7 Project.

These are mailman mailing lists and so have convenient web interfaces for subscribers to control their settings. See http://www.openss7.org/mailinglist.html.

The mailing lists are as follows:

openss7
The openss7 mailing list is for general enquiries, information exchange and announcements regarding the OpenSS7 Project. This is our original mailing list and takes the highest amount of traffic.

openss7-announce
The openss7-announce mailing list is for announcements related to the OpenSS7 Project. This list will accept announcements posted by subscribers. Subscribe to this list if you are interested in announcements from the OpenSS7 Project, subscribers and sponsors, related to the OpenSS7 Project or STREAMS, SS7, SIGTRAN or SCTP in general.

openss7-cvs
The openss7-cvs mailing list is for automatic CVS log reporting. You must get permission of the owner to subscribe to this list. Subscribers are not allowed to post to this list, this is merely for distributing notification of changes to the CVS repository.h

openss7-develop
The openss7-develop mailing list is for email exchange related to the development projects under the OpenSS7 Project. This includes development requests, proposals, requests for comment or proposal. Subscribe to this list if you are interested in ongoing development details regarding the OpenSS7 Project.

openss7-test
The openss7-test mailing list is for email exchange related to the testing of code under the OpenSS7 Project. This specifically relates to conformance testing, verification testing, interoperability testing and beta testing. Subscribe to this list if you are interested in participating in and receiving ongoing details of test activities under the OpenSS7 Project.

openss7-bugs
The openss7-bugs mailing list is specifically tailored to bug tracking. The mailing list takes a feed from the OpenSS7 GNATS bug tracking system and accepts posting of responses to bug reports, tracking and resolution. Subscribe to this list if you are interested in receiving detailed OpenSS7 release code bug tracking information. This list is not archived; for historical information on problem reports, see our GNATS databases.

openss7-updates
The openss7-updates mailing list provides updates on OpenSS7 Project code releases and ongoing activities. Subscribers are not allowed to post to this list; this list is for official OpenSS7 Project announcements only. Subscribe to this list if you are interested in receiving updates concerning official releases and activities of the OpenSS7 Project.

openss7-streams
The openss7-streams mailing list is for email exchange related to the STREAMS development projects under the OpenSS7 Project. This includes development requests, proposals, requests for comment or proposal. Subscribe to this list if you are interested in ongoing development details regarding the OpenSS7 Project STREAMS components.

linux-streams
The linux-streams mailing list is for mail exchange related to Linux Fast-STREAMS or Linux STREAMS. This includes patches, development requests, proposals, requests for comment or proposal. Subscribe to this list if you are interested in ongoing development details regarding the STREAMS for Linux components. This is the the new (September 2006) home of the linux-streams list formerly of <gsyc.escet.urjc.es>.
Spam

To avoid spam being sent to the members of the OpenSS7 mailing list(s), we have blocked mail from non-subscribers. Please subscribe to the mailing list before attempting to post to them. (Attempts to post when not subscribed get bounced.)

As an additional measure against spam, subscriber lists for all OpenSS7 mailing lists are not accessible to non-subscribers; for most lists subscriber lists are only accessible to the list administrator. This keeps your mailing address from being picked off our website by bulk mailers.

Acceptable Use Policy

It is acceptable to post professional and courteous messages regarding the OpenSS7 package or any general information or questions concerning STREAMS, SS7, SIGTRAN, SCTP or telecommunications applications in general.

Large Attachments

The mailing list is blocked from messages of greater than 40k. If you have attachments (patches, test programs, etc.) and you mail them to the list, it will bounce to the list administrator. If you are interested in making your patches, test programs, test results or other large attachments available to the members of the mailing list, state in the message that you would like them posted and the list administrator will place them in the mail archives.

Quick Start Guide

OpenSS7 STREAMS Utilities

Package strutil-0.9.2.6 was released under GPLv2 2007-06-24.

The OpenSS7 STREAMS Utilities package provides STREAMS modules and drivers, programs and daemons for administration and handling of the STREAMS subsystem.

The strutil package is currently incomplete. The purpose of the package was to move STREAMS utility programs and modules outside of the STREAMS release package so as to allow them to be used with both LiS and Linux Fast-STREAMS. As Linux Fast-STREAMS has already shown superior to LiS in terms of both performance and conformance, it is no longer necessary to keep these packages separate and they can be combined once again with Linux Fast-STREAMS.

The OpenSS7 STREAMS Utilities package includes kernel modules, SVR 4.2 STREAMS drivers, modules, libraries, utilities, test programs, daemons, and development environment for the development and execution of STREAMS modules and drivers. This package contains primarily user-space utilities and test programs.

This distribution is only currently applicable to Linux 2.4 and 2.6 kernels and was targeted at ix86, x86_64, ppc and ppc64 architectures, but should build and install for other architectures as well.

Release

This is the strutil-0.9.2.6 package, released 2007-06-24. This `0.9.2.6' release, and the latest version, can be obtained from the download area of The OpenSS7 Project website using a command such as:

     $> wget http://www.openss7.org/tarballs/strutil-0.9.2.6.tar.bz2

The release is available as an autoconf(1) tarball, src.rpm or dsc, or as a set of binary rpms or debs. See the download page for the autoconf(1) tarballs, src.rpms or dscs. See the strutil package page for tarballs, source and binary packages.

Please see the NEWS file for release notes and history of user visible changes for the current version, and the ChangeLog file for a more detailed history of implementation changes. The TODO file lists features not yet implemented and other outstanding items.

Please see the INSTALL, INSTALL-strutil and README-make, files (or see Installation) for installation instructions.

When working from cvs(1) or git(1), please see the README-cvs, file (or see Downloading from CVS). An abbreviated installation procedure that works for most applications appears below.

This release of the package is published strictly under Version 2 of the GNU Public License which can be found in the file COPYING. Package specific licensing terms (if any) can be found in the file LICENSES. Please respect these licensing arrangements. If you are interested in different licensing terms, please contact the copyright holder, or OpenSS7 Corporation <sales@openss7.com>.

See README-alpha (if it exists) for alpha release information.

Prerequisites

The quickest and easiest way to ensure that all prerequisites are met is to download and install this package from within the OpenSS7 Master Package, openss7-0.9.2.F, instead of separately.

Prerequisites for the OpenSS7 STREAMS Utilities package are as follows:

  1. Linux distribution, somewhat Linux Standards Base compliant, with a 2.4 or 2.6 kernel and the appropriate tool chain for compiling out-of-tree kernel modules. Most recent Linux distributions are usable out of the box, but some development packages must be installed. For more information, see Compatibility.

    − A fairly LSB compliant GNU/Linux distribution.3
    − Linux 2.4 kernel (2.4.10 - 2.4.27), or
    − Linux 2.6 kernel (2.6.3 - 2.6.21);
    − glibc2 or better.
    − GNU info (for info files).
    − GNU groff (for man pages).4

(Note: If you acquired strutil a part of the OpenSS7 Master Package, then the dependencies listed below will already have been met by unpacking the master package.)

  1. OpenSS7 Linux Fast-STREAMS, streams-0.9.2.3. 5
  2. OpenSS7 STREAMS Compatibility Modules, strcompat-0.9.2.6.

When configuring and building multiple OpenSS7 Project release packages, place all of the source packages (unpacked tarballs) at the same directory level and all build directories at the same directory level (e.g. all source packages under /usr/src).

When installing packages that install as kernel modules, it is necessary to have the correct kernel development package installed. For the following distributions, use the following commands:

     Ubuntu:  $> apt-get install linux-headers
     Debian:  $> apt-get install kernel-headers
     Fedora:  $> yum install kernel-devel

You also need the same version of gcc(1) compiler with which the kernel was built. If it is not the default, add `CC=kgcc' on the line after `./configure', for example:

     $> ../strutil-0.9.2.6/configure CC='gcc-3.4'

Installation

The following commands will download, configure, build, check, install, validate, uninstall and remove the package:

     $> wget http://www.openss7.org/tarballs/strutil-0.9.2.6.tar.bz2
     $> tar -xjvf strutil-0.9.2.6.tar.bz2
     $> mkdir build
     $> pushd build
     $> ../strutil-0.9.2.6/configure --enable-autotest
     $> make
     $> make check
     $> sudo make install
     $> sudo make installcheck
     $> sudo make uninstall
     $> popd
     $> sudo rm -rf build
     $> rm -rf strutil-0.9.2.6
     $> rm -f strutil-0.9.2.6.tar.bz2

If you have problems, try building with the logging targets instead. If the make of a logging target fails, an automatic problem report will be generated that can be mailed to The OpenSS7 Project.6 Installation steps using the logging targets proceed as follows:

     $> wget http://www.openss7.org/tarballs/strutil-0.9.2.6.tar.bz2
     $> tar -xjvf strutil-0.9.2.6.tar.bz2
     $> mkdir build
     $> pushd build
     $> ../strutil-0.9.2.6/configure --enable-autotest
     $> make compile.log
     $> make check.log
     $> sudo make install.log
     $> sudo make installcheck.log
     $> sudo make uninstall.log
     $> popd
     $> sudo rm -rf build
     $> rm -rf strutil-0.9.2.6
     $> rm -f strutil-0.9.2.6.tar.bz2

See README-make for additional specialized make targets.

For custom applications, see the INSTALL and INSTALL-strutil files or the see Installation, as listed below. If you encounter troubles, see Troubleshooting, before issuing a bug report.

Brief Installation Instructions

The OpenSS7 STREAMS Utilities package is available from the downloads area of The OpenSS7 Project website using a command such as:

     $> wget http://www.openss7.org/tarballs/strutil-0.9.2.6.tar.bz2

Unpack the tarball using a command such as:

     $> tar -xjvf strutil-0.9.2.6.tar.bz2

The tarball will unpack into the relative subdirectory named after the package name: strutil-0.9.2.6.

The package builds using the GNU autoconf utilities and the configure script. To build the package, we recommend using a separate build directory as follows:

     $> mkdir build
     $> cd build
     $> ../strutil-0.9.2.6/configure

In general, the package configures and builds without adding any special options to the configure script. For general options to the configure script, see the GNU INSTALL file in the distribution:

     $> less ../strutil-0.9.2.6/INSTALL

For specific options to the configure script, see the INSTALL-strutil file in the distribution, or simply execute the configure script with the --help option like so:

     $> ../strutil-0.9.2.6/configure --help

After configuring the package, the package can be compiled simply by issuing the `make' command:

     $> make

Some specialized makefile targets exists, see the README-make file in the distribution or simply invoke the `help' target like so:

     $> make help | less

After successfully building the package, the package can be checked by invoking the `check' make target like so:

     $> make check

After successfully checking the package, the package can be installed by invoking the `install' make target (as root) like so:

     $> sudo make install

The test suites that ship with the package can be invoked after the package has been installed by invoking the `installcheck' target. This target can either be invoked as root, or as a normal user, like so:

     $> make installcheck

(Note: you must add the --enable-autotest flag to configure, above for the test suites to be invoked with `make installcheck'.)

The package can be cleanly removed by invoking the `uninstall' target (as root):

     $> sudo make uninstall

Then the build directory and tarball can be simply removed:

     $> cd ..
     $> rm -rf build
     $> rm -rf strutil-0.9.2.6
     $> rm -f strutil-0.9.2.6.tar.bz2

Detailed Installation Instructions

More detailed installation instructions can be found in the Installation, contained in the distribution in `text', `info', `html' and `pdf' formats:

     $> cd ../strutil-0.9.2.6
     $> less doc/manual/strutil.txt
     $> lynx doc/manual/strutil.html
     $> info doc/manual/strutil.info
     $> xpdf doc/manual/strutil.pdf

The `text' version of the manual is always available in the MANUAL file in the release.

The current manual is also always available online from The OpenSS7 Project website at:

     $> lynx http://www.openss7.org/strutil_manual.html

1 Introduction

This manual documents the design, implementation, installation, operation and future development schedule of the OpenSS7 STREAMS Utilities package.

1.1 Overview

This manual documents the design, implementation, installation, operation and future development of the OpenSS7 STREAMS Utilities package.

The OpenSS7 STREAMS Utilities package is an implementation of standard SVR 4.2 and otherwise commonly implemented STREAMS utilities that can be used with Linux Fast-STREAMS7 or Linux STREAMS8. It includes development tools, header files and manual pages for OpenSS7 STREAMS Utilities.

1.2 Organization of this Manual

This manual is organized (loosely) into several sections as follows:

Introduction. This introduction
Objective. Objective of the package
Reference. Contents of the package
Conformance. Conformance of the package
Releases. Releases of the package
Installation. Installation of the package
Troubleshooting. Troubleshooting of the package

1.3 Conventions and Definitions

This manual uses texinfo typographic conventions.

2 Objective

The objective of the OpenSS7 STREAMS Utilities package is to provide a number of STREAMS Utilities that are somewhat independent of STREAMS implementation in a separate package. These STREAMS utilities were originally part of the Linux Fast-STREAMS package, but have been split off so that, (heaven forbid), they can be used with LiS.9

3 Reference

3.1 Files

3.2 Drivers

3.3 Modules

3.4 Libraries

3.5 Utilities

3.6 Development

4 Conformance

5 Releases

This is the OpenSS7 Release of the OpenSS7 STREAMS Utilities tools, drivers and modules used with the Linux Fast-STREAMS or Linux STREAMS10 SVR 4.2 STREAMS releases.

The purpose of providing a separate release of this package was to separate the OpenSS7 STREAMS Utilities tools, headers, drivers and modules from the Linux STREAMS11 package for use with both Linux STREAMS12 and Linux Fast-STREAMS in preparation for replacement of the former by the later.

The following sections provide information on OpenSS7 STREAMS Utilities releases as well as compatibility information of OpenSS7 release to mainstream UNIX releases of the core, modules and drivers, as well as Linux kernel compatibility.

5.1 Prerequisites

The quickest and easiest way to ensure that all prerequisites are met is to download and install this package from within the OpenSS7 Master Package, openss7-0.9.2.F, instead of separately.

Prerequisites for the OpenSS7 STREAMS Utilities package are as follows:

  1. Linux distribution, somewhat Linux Standards Base compliant, with a 2.4 or 2.6 kernel and the appropriate tool chain for compiling out-of-tree kernel modules. Most recent Linux distributions are usable out of the box, but some development packages must be installed. For more information, see Compatibility.

    − A fairly LSB compliant GNU/Linux distribution.13
    − Linux 2.4 kernel (2.4.10 - 2.4.27), or
    − Linux 2.6 kernel (2.6.3 - 2.6.21);
    − glibc2 or better.
    − GNU info (for info files).
    − GNU groff (for man pages).14

(Note: If you acquired strutil a part of the OpenSS7 Master Package, then the dependencies listed below will already have been met by unpacking the master package.)

  1. OpenSS7 Linux Fast-STREAMS, streams-0.9.2.3. 15
  2. OpenSS7 STREAMS Compatibility Modules, strcompat-0.9.2.6.

If you need to rebuild the package from sources with modifications, you will need a larger GNU tool chain as described in See Downloading from CVS.

5.2 Compatibility

This section discusses compatibility with major prerequisites.

5.2.1 GNU/Linux Distributions

OpenSS7 STREAMS Utilities is compatible with the following Linux distributions:16

  • CentOS Enterprise Linux 3.4 (centos34)
  • CentOS Enterprise Linux 4.0 (centos4)
  • CentOS Enterprise Linux 4.92 (centos48)
  • CentOS Enterprise Linux 5.0 (centos5)
  • Debian 3.0r2 Woody (deb3.0) – TBD
  • Debian 3.1r0a Sarge (deb3.1)
  • Debian 4.0r1 Etch (deb4.0) (untested)
  • Fedora Core 1 (FC1) – TBD
  • Fedora Core 2 (FC2) – TBD
  • Fedora Core 3 (FC3) – TBD
  • Fedora Core 4 (FC4) – TBD
  • Fedora Core 5 (FC5)
  • Fedora Core 6 (FC6)
  • Fedora 7 (FC7)
  • Gentoo 2006.1 (untested)
  • Lineox 4.026 (LEL4) – TBD
  • Lineox 4.053 (LEL4)
  • Mandrakelinux 9.2 (MDK92) – TBD
  • Mandrakelinux 10.0 (MDK100) – TBD
  • Mandrakelinux 10.1 (MDK101) – TBD
  • Mandriva Linux LE2005 (MDK102) – TBD
  • Mandriva Linux LE2006 (MDK103)
  • Mandriva One (untested)
  • Performance Technlogies NexusWare24 – TBD
  • Performance Technologies NexusWare 8.0
  • RedHat Linux 7.2 (RH7)
  • RedHat Linux 7.3 (RH7)
  • RedHat Linux 8.0 (RH8) – TBD
  • RedHat Linux 9 (RH9) – TBD
  • RedHat Enterprise Linux 3.0 (EL3)
  • RedHat Enterprise Linux 4 (EL4)
  • RedHat Enterprise Linux 5 (EL5)
  • SuSE 8.0 Professional (SuSE8.0) – TBD
  • SuSE 9.1 Personal (SuSE9.1) – TBD
  • SuSE 9.2 Professional (SuSE9.2) – TBD
  • SuSE OpenSuSE (SuSEOSS)
  • SuSE 10.0 (SuSE10.0)
  • SuSE 10.1 (SuSE10.1)
  • SuSE 10.2 (SuSE10.2)
  • SLES 9 (SLES9)
  • SLES 9 SP2 (SLES9)
  • SLES 9 SP3 (SLES9)
  • SLES 10 (SLES10)
  • Ubuntu 5.10 (ubu5.10)
  • Ubuntu 6.03 LTS (ubu6.03)
  • Ubuntu 6.10 (ubu6.10)
  • Ubuntu 7.04 (ubu7.04)
  • WhiteBox Enterprise Linux 3.0 (WBEL3)
  • WhiteBox Enterprise Linux 4 (WBEL4)

When installing from the tarball (see Installing the Tar Ball), this distribution is probably compatible with a much broader array of distributions than those listed above. These are the distributions against which the current maintainer creates and tests builds.

5.2.2 Kernel

The OpenSS7 STREAMS Utilities package compiles as a Linux kernel module. It is not necessary to patch the Linux kernel to build or use the package.17 Nor do you have to recompile your kernel to build or use the package. OpenSS7 packages use autoconf scripts to adapt the package source to your existing kernel. The package builds and runs nicely against production kernels from the distributions listed above. Rather than relying on kernel versions, the autoconf scripts interrogate the kernel for specific features and variants to better adapt to distribution production kernels that have had patches applied over the official kernel.org sources.

The OpenSS7 STREAMS Utilities package is compatible with 2.4 kernel series after 2.4.10 and has been tested up to and including 2.4.27. It has been tested from 2.6.3 up to and including 2.6.21 (with Fedora 7 patchsets). Please note that your mileage may vary if you use a kernel more recent than 2.6.21: it is difficult to anticipate changes that kernel developers will make in the future. Many kernels in the 2.6 series now vary widely by release version and if you encounter problems, try a kernel within the supported series.

UP validation testing for kernels is performed on all supported architectures. SMP validation testing is performed on UP machines, as well as on an Intel 3.0GHz Pentium IV 630 with HyperThreading enabled. Because HyperThreading is not as independent as multiple CPUs, SMP validation testing is limited.

5.2.3 Architectures

The OpenSS7 STREAMS Utilities package compiles and installs on a wide range of architectures. Although it is believed that the package will work on all architectures supported by the Linux kernel being used, validation testing has only been performed with the following architectures:

  • ix86
  • x86_64
  • ppc (MPC 860)
  • ppc64

32-bit compatibility validation testing is performed on all 64-bit architectures supporting 32-bit compatibility. If you would like to validate an OpenSS7 package on a specific machine architecture, you are welcome to sponsor the project with a test machine.

5.2.4 Linux STREAMS

The OpenSS7 STREAMS Utilities package is currently compatible with Linux STREAMS,18 however, to use the OpenSS7 STREAMS Utilities package with LiS requires use of the OpenSS7 release packages of LiS. The OpenSS7 STREAMS Utilities package is compatible with the OpenSS7 LiS-2.18.6 release that is available from the The OpenSS7 Project Downloads Page. But, do not use LiS: it is buggy, unsupported and deprecated. Use Linux Fast-STREAMS instead.

5.2.5 Linux Fast-STREAMS

The OpenSS7 STREAMS Utilities package is currently compatible with Linux Fast-STREAMS (LfS). The OpenSS7 STREAMS Utilities package is compatible with the OpenSS7 streams-0.9.2.3 release that is available from the The OpenSS7 Project Downloads Page.

5.3 Release Notes

The sections that follow provide information on OpenSS7 releases of the
OpenSS7 STREAMS Utilities package.

Major changes for release strutil-0.9.2.6

This is an internal alpha release of the package.

Major features since the last internal release are as follows:

  • Support build on openSUSE 10.2.
  • Support build on Fedora 7 with 2.6.21 kernel.
  • Support build on CentOS 5.0 (RHEL5).
  • Support build on Ubuntu 7.04.
  • Updated to gettext 0.16.1.
  • Changes to support build on 2.6.20-1.2307.fc5 and 2.6.20-1.2933.fc6 kernel.
  • Supports build on Fedora Core 6.
  • Support for recent distributions and tool chains.

Major changes for release strutil-0.9.2.4

This is an internal alpha release of the package.

Major features since the last internal release are as follows:

  • Added versions to all exported symbols. Made OpenSS7 unique functions GPL export.
  • Improvements to the common build environment with better support for standalone package builds on 2.4 kernels.
  • Support for autoconf 2.61, automake 1.10 and gettext 0.16.
  • Support for Ubuntu 6.10 distribution and bug fixes for i386 kernels.
  • The package now looks for other subpackages with a version number as unpacked by separate tarball.

Major changes for release strutil-0.9.2.3

This is an internal alpha release of the package.

  • Support for most recent 2.6.18 kernels (including Fedora Core 5 with inode diet patchset).

Major changes for release strutil-0.9.2.3.rc3

  • Now builds 32-bit compatibility libraries and tests them against 64-bit kernel modules and drivers. The `make installcheck' target will now automatically test both 64-bit native and 32-bit compatibility versions, one after the other, on 64-bit platforms.
  • Added versions to all library symbols.
  • Many documentation updates for all OpenSS7 packages. Automated release file generation making for vastly improved and timely text documentation present in the release directory.
  • Dropped support for LiS.
  • Updated init scripts for proper addition and removal of modules.
  • Start assigning majors at major device number 231 instead of major device number 230. Assign major device number 230 explicitly to the clone device. Package will now support extended ranges of minor devices on 2.6 kernels under Linux Fast-STREAMS only. strutil now supports expanded addressable minor device numbers, permitting 2^16 addressable minor devices per major device number on 2.6 kernels: LiS cannot support this change.
  • Better detection of SUSE distributions, release numbers and SLES distributions: support for additional SuSE distributions on ix86 as well as x86_64. Added distribution support includes SLES 9, SLES 9 SP2, SLES 9 SP3, SLES 10, SuSE 10.1.
  • Improved compiler flag generation and optimizations for recent gcc compilers and some idiosyncratic behaviour for some distributions (primarily SUSE).
  • Optimized compilation is now available also for user level programs in addition to kernel programs. Added new --with-optimize option to configure to accomplish this.
  • Added --disable-devel configure option to suppress building and installing development environment. This feature is for embedded or pure runtime targets that do not need the development environment (static libraries, manual pages, documentation).
  • Added send-pr script for automatic problem report generation.

This was an internal alpha release.

Major changes for release strutil-0.9.2.3.rc2

Corrections for and testing of 64-bit clean compile and test runs on x86_64 architecture. Some bug corrections resulting from gcc 4.0.2 compiler warnings.

Corrected build flags for Gentoo and 2.6.15 kernels as reported on mailing list.

This was an internal alpha release.

Major changes for release strutil-0.9.2.2

The previous release was experimental and was an Alpha release. This package represent a stripping off of utilities from Linux Fast-STREAMS that could also be used for Linux STREAMS (LiS). This release is the result of further development and testing on this utilities package.

Initial release strutil-0.9.2.1

Initial autoconf/RPM packaging of the strutil release.

This is the initial release of the OpenSS7 STREAMS Utilities package for Linux Fast-STREAMS (and LiS). These STREAMS utilities were formerly part of the Linux Fast-STREAMS package (streams-0.7a.3), however, as they were also applicable to LiS, they have been removed into a separate package. Once Linux Fast-STREAMS is production grade, these compatibility modules will be rolled back into the streams package as LiS becomes deprecated.

5.4 Maturity

The OpenSS7 Project adheres to the following release philosophy:

  • pre-alpha release
  • alpha release
  • beta release
  • gamma release
  • production release
  • unstable release

5.4.1 Pre-Alpha Releases

Pre-alpha releases are releases that have received no testing whatsoever. Code in the release is not even known to configure or compile. The purpose of a pre-alpha release is to make code and documentation available for inspection only, and to solicit comments on the design approach or other characteristics of the software package.

Pre-alpha release packages ship containing warnings recommending that the user not even execute the contained code.

5.4.2 Alpha Releases

Alpha releases are releases that have received little to no testing, or that have been tested and contains known bugs or defects that make the package unsuitable even for testing. The purpose for an alpha release are the same as for the pre-alpha release, with the additional purpose that it is an early release of partially functional code that has problems that an external developer might be willing to fix themselves and contribute back to the project.

Alpha release packages ship containing warnings that executing the code can crash machines and might possibly do damage to systems upon which it is executed.

5.4.3 Beta Releases

Beta releases are releases that have received some testing, but the testing to date is not exhaustive. Beta release packages do not ship with known defects. All known defects are resolved before distribution; however, as exhaustive testing has not been performed, unknown defects may exist. The purpose for a beta release is to provide a baseline for other organizations to participate in the rigorous testing of the package.

Beta release packages ship containing warnings that the package has not been exhaustively tested and that the package may cause systems to crash. Suitability of software in this category for production use is not advised by the project; however, as always, is at the discretion of the user of the software.

5.4.4 Gamma Releases

Gamma releases are releases that have received exhaustive testing within the project, but external testing has been minimal. Gamma release packages do not ship with known defects. As exhaustive internal testing has been performed, unknown defects should be few. Please remember that there is NO WARRANTY on public release packages.

Gamma release packages typically resolve problems in previous beta releases, and might not have had full regression testing performed. Suitability of software in this category for production use is at the discretion of the user of the software. The OpenSS7 Project recommends that the complete validation test suites provided with the package be performed and pass on target systems before considering production use.

5.4.5 Production Releases

Production releases are releases that have received exhaustive testing within the project and validated on specific distributions and architectures. Production release packages do not ship with known defects. Please remember that there is NO WARRANTY on public release packages.

Production packages ship containing a list of validated distributions and architectures. Full regression testing of any maintenance changes is performed. Suitability of software in this category for production use on the specified target distributions and architectures is at the discretion of the user. It should not be necessary to preform validation tests on the set of supported target systems before considering production use.

5.4.6 Unstable Releases

Unstable releases are releases that have received extensive testing within the project and validated on a a wide range of distributions and architectures; however, is has tested unstable and found to be suffering from critical problems and issues that cannot be resolved. Maintenance of the package has proved impossible. Unstable release packages ship with known defects (and loud warnings). Suitability of software in this category for production use is at the discretion of the user of the software. The OpenSS7 Project recommends that the problems and issues be closely examined before this software is used even in a non-production environment. Each failing test scenario should be completely avoided by the application. OpenSS7 beta software is more stable that software in this category.

5.5 Bugs

5.5.1 Defect Notices

OpenSS7 STREAMS Utilities has known and unknown defects. This is a pre-alpha release. Some defects might be harmful. No validation testing whatsoever has been performed by the OpenSS7 Project on this software. The software might not even configure or compile. The OpenSS7 Project recommends that you do not use this software. Use at your own risk. Remember that there is NO WARRANTY.19

This software is pre-alpha software. As such, it will crash your kernel. Installation of the software will irreparably mangle your header files or Linux distribution in such a way as to make it unusable. Crashes will lock your system and rebooting the system will not repair the problem. You will lose all the data on your system. Because this software will crash your kernel, the resulting unstable system can destroy computer hardware or peripherals making them unusable. You will void the warranty on any system on which you run this software. YOU HAVE BEEN WARNED.

5.5.2 Known Defects

With the exception of packages not originally created by the OpenSS7 Project, the OpenSS7 Project software does not ship with known bugs in any release stage except pre-alpha. OpenSS7 STREAMS Utilities had no known bugs at the time of release.

5.5.3 Defect History

This section contains historical bugs that were encountered during development and their resolutions. This list serves two purposes:

  1. It captures bugs encountered between releases during development that could possibly reoccur (and the Moon is made of blue cheese). It therefore provides a place for users to look if they encounter a problem.
  2. It provides a low overhead bug list between releases for developers to use as a TODO list.
Bugs
(no items)

5.6 Schedule

Current Plan

The strutil package is currently incomplete. The purpose of the package was to move STREAMS utility programs and modules outside of the STREAMS release package so as to allow them to be used with both LiS and Linux Fast-STREAMS. As Linux Fast-STREAMS has already shown superior to LiS in terms of both performance and conformance, it is no longer necessary to keep these packages separate and they can be combined once again (or still) with Linux Fast-STREAMS.

The current plan is to maintain this package for current distributions, kernels and tool chains utill such time as LiS is kicked out of the CVS archive tree completely. It is not necessary for Linux Fast-STREAMS as all of its facilities are includes in the base Linux Fast-STREAMS package.

Things to Do
  • The strutil package is currently incomplete. The purpose of the package was to move STREAMS utility programs and modules outside of the STREAMS release package so as to allow them to be used with both LiS and Linux Fast-STREAMS. As Linux Fast-STREAMS has already shown superior to LiS in terms of both performance and conformance, it is no longer necessary to keep these packages separate and they can be combined once again (or still) with Linux Fast-STREAMS.

5.7 History

For the latest developments with regard to history of changes, please see the ChangeLog file in the release package.

6 Installation

6.1 Downloading

The OpenSS7 STREAMS Utilities package releases can be downloaded from the downloads page of The OpenSS7 Project. The package is available as a binary RPM (for popular architectures) a source RPM, Debian binary DEB and source DSC, or as a tar ball. If you are using a browsable viewer, you can obtain the OpenSS7 release of strutil from the links in the sections that follow.

By far the easiest (most repeatable and manageable) form for installing and using OpenSS7 packages is to download and install individual packages from binary RPM or DEB. If binary RPMs or DEBs are not available for your distribution, but your distribution supports rpm(1) or dpkg(1), the next best method for installing and using OpenSS7 packages is to download and rebuild the source RPMs or DSCs.

If your architecture does not support rpm(1) or dpkg(1) at all, or you have special needs (such as cross-compiling for embedded targets), the final resort method is to download, configure, build and install from tarball. In this later case, the easiest way to build and install OpenSS7 packages from tarball is to use the tarball for the OpenSS7 Master Package, openss7-0.9.2.F.

6.1.1 Downloading the Binary RPM

To install from binary RPM, you will need several of the RPM for a complete installation. Binary RPM fall into several categories. To download and install a complete package requires the appropriate RPM from each of the several categories below, as applicable. Some release packages do not provide RPMs in each of the several categories.

To install from Binary RPM, you will need all of the following kernel independent packages for your architecture, and one of the kernel-dependent packages from the next section.

Independent RPM

Independent RPM are dependent on neither the Linux kernel version, nor the STREAMS package. For example, the source package `strutil-source-0.9.2.6-1.7.2.noarch.rpm', is not dependent on kernel nor STREAMS package.

All of the following kernel and STREAMS independent RPM are required for your architecture. Binary RPMs listed here are for example only: additional binary RPMs are available from the downloads site. If your architecture is not available, you can build binary RPM from the source RPM (see see Building from the Source RPM).

Architecture Independent
strutil-dev-0.9.2.6-1.7.2.noarch.rpm
The strutil-dev package contains the device definitions necessary to run applications programs developed for OpenSS7 STREAMS Utilities.20

strutil-doc-0.9.2.6-1.7.2.noarch.rpm
The strutil-doc package contains this manual in plain text, postscript, pdf and html forms, along with the meta-information from the strutil package. It also contains all of the manual pages necessary for developing OpenSS7 STREAMS Utilities applications and OpenSS7 STREAMS Utilities STREAMS modules or drivers.

strutil-init-0.9.2.6-1.7.2.noarch.rpm
The strutil-init package contains the init scripts and provides the `postinst' scripts necessary to create kernel module preloads and modules definitions for all kernel module `core' subpackages.

strutil-source-0.9.2.6-1.7.2.noarch.rpm
The strutil-source package contains the source code necessary for building the OpenSS7 STREAMS Utilities release. It includes the autoconf(1) configuration utilities necessary to create and distribute tarballs, rpm and deb/dsc. 21
Architecture Dependent
strutil-devel-0.9.2.6-1.7.2.i686.rpm
The strutil-devel package contains library archives for static compilation, header files to develop OpenSS7 STREAMS Utilities modules and drivers. This also includes the header files and static libraries required to compile OpenSS7 STREAMS Utilities applications programs.

strutil-lib-0.9.2.6-1.7.2.i686.rpm
The strutil-lib package contains the run-time shared libraries necessary to run application programs and utilities developed for the strutil package. 22
STREAMS-Dependent RPM

STREAMS-Dependent RPM are dependent upon the specific STREAMS package being used, either Linux STREAMS or Linux Fast-STREAMS. Packages dependent upon Linux STREAMS will have LiS in the package name. Packages dependent upon Linux Fast-STREAMS will have streams in the package name. Note that some STREAMS-Dependent RPM are also Kernel-Dependent RPM as described below.

One of the following STREAMS-Dependent packages is required for your architecture. If your architecture is not on the list, you can build binary RPM from the source RPM (see see Building from the Source RPM).

strutil-LiS-util-0.9.2.6-1.7.2.i686.rpm
The strutil-LiS-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Utilities package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strutil-LiS-util package if you have LiS installed.

strutil-streams-util-0.9.2.6-1.7.2.i686.rpm
The strutil-streams-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Utilities package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strutil-streams-util package if you have streams installed.
Kernel-Dependent RPM

Kernel-Dependent RPM are dependent on specific Linux Kernel Binary RPM releases. Packages are provided for popular released RedHat kernels. Packages dependent upon RedHat or other kernel RPM will have the `_kversion' kernel package version in the package name.

One of the following Kernel-Dependent packages is required for your architecture and kernel version. If your architecture or kernel version is not on the list, you can build binary RPM from the source RPM (see see Building from the Source RPM).23

strutil-core-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
The strutil-core package contains the loadable kernel modules that depend only on the kernel. This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version `2.4.20-28.7'.24

strutil-info-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
The strutil-info package25 contains the module symbol version information for the core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loading the actual kernel modules (from the core subpackage above). This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version `2.4.20-28.7'.26

strutil-LiS-core-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
The strutil-LiS-core package contains the kernel modules that provide the OpenSS7 STREAMS Utilities STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version `2.4.20-28.7'.27

strutil-streams-core-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
The strutil-streams-core package contains the kernel modules that provide the OpenSS7 STREAMS Utilities STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version `2.4.20-28.7'.28

strutil-LiS-info-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
The strutil-LiS-info package29 contains the module symbol version information for the LiS-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the LiS-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version `2.4.20-28.7'.30

strutil-streams-info-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
The strutil-streams-info package31 contains the module symbol version information for the streams-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the streams-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version `2.4.20-28.7'.32
Configuration and Installation

To configure, build and install the binary RPM, See Configuring the Binary RPM.

6.1.2 Downloading the Debian DEB

To install from binary DEB, you will need several of the DEB for a complete installation. Binary DEB fall into several categories. To download and install a complete package requires the appropriate DEB from each of the several categories below, as applicable. Some release packages do not provide DEBs in each of the several categories.

To install from Binary DEB, you will need all of the following kernel independent packages for your architecture, and one of the kernel-dependent packages from the next section.

Independent DEB

Independent DEB are dependent on neither the Linux kernel version, nor the STREAMS package. For example, the source package `strutil-source_0.9.2.6-0_i386.deb', is not dependent on kernel nor STREAMS package.

All of the following kernel and STREAMS independent DEB are required for your architecture. Binary DEBs listed here are for example only: additional binary DEBs are available from the downloads site. If your architecture is not available, you can build binary DEB from the Debian DSC (see see Building from the Debian DSC).

Architecture Independent
strutil-dev_0.9.2.6-0_all.deb
The strutil-dev package contains the device definitions necessary to run applications programs developed for OpenSS7 STREAMS Utilities. 33

strutil-doc_0.9.2.6-0_all.deb
The strutil-doc package contains this manual in plain text, postscript, pdf and html forms, along with the meta-information from the strutil package. It also contains all of the manual pages necessary for developing OpenSS7 STREAMS Utilities applications and OpenSS7 STREAMS Utilities STREAMS modules or drivers.

strutil-init_0.9.2.6-0_all.deb
The strutil-init package contains the init scripts and provides the postinst scripts necessary to create kernel module preloads and modules definitions for all kernel module `core' subpackages.

strutil-source_0.9.2.6-0_all.deb
The strutil-source package contains the source code necessary for building the OpenSS7 STREAMS Utilities release. It includes the autoconf(1) configuration utilities necessary to create and distribute tarballs, rpms and deb/dscs. 34
Architecture Dependent
strutil-devel_0.9.2.6-0_i386.deb
The strutil-devel package contains library archives for static compilation, header files to develop OpenSS7 STREAMS Utilities modules and drivers. This also includes the header files and static libraries required to compile OpenSS7 STREAMS Utilities applications programs.

strutil-lib_0.9.2.6-0_i386.deb
The strutil-lib package contains the run-time shared libraries necessary to run application programs and utilities developed for the strutil package. 35
STREAMS-Dependent DEB

STREAMS-Dependent DEB are dependent upon the specific STREAMS package being used, either Linux STREAMS or Linux Fast-STREAMS. Packages dependent upon Linux STREAMS will have LiS in the package name. Packages dependent upon Linux Fast-STREAMS will have streams in the package name. Note that some STREAMS-Dependent DEB are also Kernel-Dependent DEB as described below.

One of the following STREAMS-Dependent packages is required for your architecture. If your architecture is not on the list, you can build binary DEB from the Debian DSC (see see Building from the Debian DSC).

strutil-LiS-util_0.9.2.6-0_i386.deb
The strutil-LiS-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Utilities package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strutil-LiS-util package if you have LiS installed.

strutil-streams-util_0.9.2.6-0_i386.deb
The strutil-streams-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Utilities package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strutil-streams-util package if you have streams installed.
Kernel-Dependent DEB

Kernel-Dependent DEB are dependent on specific Linux Kernel Binary DEB releases. Packages are provided for popular released Debian kernels. Packages dependent upon Debian or other kernel DEB will have the `_kversion' kernel package version in the package name.

One of the following Kernel-Dependent packages is required for your architecture and kernel version. If your architecture or kernel version is not on the list, you can build binary DEB from the source DEB (see see Building from the Debian DSC).36

strutil-core-2.4.20-28.7_0.9.2.6-0_i386.deb
The strutil-core package contains the loadable kernel modules that depend only on the kernel. This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version `2.4.20-28.7'.37

strutil-info-2.4.20-28.7_0.9.2.6-0_i386.deb
The strutil-info package38 contains the module symbol version information for the core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loading the actual kernel modules (from the core subpackage above). This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version `2.4.20-28.7'.39

strutil-LiS-core-2.4.20-28.7_0.9.2.6-0_i386.deb
The strutil-LiS-core package contains the kernel modules that provide the OpenSS7 STREAMS Utilities STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version `2.4.20-28.7'.40

strutil-streams-core-2.4.20-28.7_0.9.2.6-0_i386.deb
The strutil-streams-core package contains the kernel modules that provide the OpenSS7 STREAMS Utilities STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version `2.4.20-28.7'.41

strutil-LiS-info-2.4.20-28.7_0.9.2.6-0_i386.deb
The strutil-LiS-info package42 contains the module symbol version information for the LiS-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the LiS-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version `2.4.20-28.7'.43

strutil-streams-info-2.4.20-28.7_0.9.2.6-0_i386.deb
The strutil-streams-info package44 contains the module symbol version information for the streams-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the streams-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version `2.4.20-28.7'.45
Configuration and Installation

To configure, build and install the Debian DEB, See Configuring the Debian DEB.

6.1.3 Downloading the Source RPM

If you cannot obtain a binary RPM for your architecture, or would like to roll you own binary RPM, download the following source RPM.

strutil-0.9.2.6-1.src.rpm
This is the source RPM for the package. From this source RPM it is possible to build binary RPM for any supported architecture and for any 2.4 or 2.6 kernel, for either Linux STREAMS or Linux Fast-STREAMS.
Configuration

To configure the source RPM, See Configuring the Source RPM.

6.1.4 Downloading the Debian DSC

If you cannot obtain a binary DEB for your architecture, or would like to roll your own DEB, download the following Debian DSC.

strutil_0.9.2.6-0.dsc
strutil_0.9.2.6-0.tar.gz
This is the Debian DSC for the package. From this Debian DSC it is possible to build binary DEB for any supported architecture and for any 2.4 or 2.6 kernel, for either Linux STREAMS or Linux Fast-STREAMS.
Configuration

To configure the source RPM, See Configuring the Debian DSC.

6.1.5 Downloading the Tar Ball

For non-rpm(1) architectures, such as NexusWare embedded target, download the tarball as follows:

strutil-0.9.2.6.tar.gz
strutil-0.9.2.6.tar.bz2
These are the tar(1) balls for the release. These tar(1) balls contain the autoconf(1) distribution which includes all the source necessary for building and installing the package. These tarballs will even build Source RPM and Binary RPM on rpm(1) architectures and Debian DSC and DEB on dpkg(1) architectures.

The tar ball may be downloaded easily with wget(1) as follows:

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2

or

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.gz

Note that you will need an OpenSS7 Project user name and password to download release candidates (which are only available to subscribers and sponsors of the OpenSS7 Project).

Unpacking the Archive

After downloading one of the tar balls, unpack the archive using one of the following commands:

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.gz
     % tar -xzvf strutil-0.9.2.6.tar.gz

or

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2

Either will create a subdirectory name strutil-0.9.2.6 containing all of the files and subdirectories for the strutil package.

Configuration

To configure and install the tar ball, See Configuring the Tar Ball.

6.1.6 Downloading from CVS

If you are a subscriber or sponsor of The OpenSS7 Project with CVS archive access privileges then you can download release, mid-release or release candidate versions of the strutil package from the project CVS archive.

The OpenSS7 STREAMS Utilities package is located in the strutil module of /var/cvs. For release tag information, see Releases.

To access the archive from the project CVS pserver, use the following commands to check out a version from the archive:

     % export CVSROOT='-d:pserver:username@cvs.openss7.com:2401/var/cvs'
     % cvs login
     Password: *********
     % cvs co -r strutil_0.9.2.6 strutil
     % cvs logout

It is, of course, possible to check out by date or by other criteria. For more information, see cvs(1).

Preparing the CVS Working Directory

Although public releases of the strutil package do not require reconfiguration, creating a configurable directory from the CVS archive requires tools not normally distributed with the other releases.

The build host requires the following GNU tools:

  • autoconf 2.61
  • automake 1.10
  • libtool 1.5.22
  • gettext 0.16.1

These tools can be acquired from the FSF website in the free software directory, and also at the following locations:

It should be stressed that, in particular, the autoconf(1), and automake(1), must be at version releases 2.61 and 1.10. The versions normally distributed in some mainstream GNU/Linux distributions are, in fact, much older than these versions.46 GNU version of these packages configured and installed to default directories will install in /usr/local/ allowing them to coexist with distribution installed versions.

For building documentation, the build host also requires the following documentation tools:

  • gs 8.15
  • tetex 3.0
  • texinfo 4.8
  • transfig 3.2.5
  • imagemagick 6.2.4
  • groff 1.17.2
  • gnuplot 3.7

Most desktop GNU/Linux distributions will have these tools; however, some server-style installations (e.g. Ubuntu-server, SLES 9 or Fedora 6 or 7) will not and they must be installed separately.47

For uncooked manual pages, the entire groff(1) package is required on Debian and Ubuntu systems (the base package does not include grefer(1) which is used extensively by uncooked manual pages). The following will get what you need:

     Debian: % apt-get install groff_ext
     Ubuntu: % apt-get install groff

In addition, the build host requires a complete tool chain for compiling for the target host, including kernel tools such as genksyms(8) and others.

If you wish to package rpms on an rpm(1) system, or debs on a dpkg(1) system, you will need the appropriate tool chain. Systems based on rpm(1) typically have the necessary tool chain available, however, dpkg(1) systems do not. The following on a Debian or Ubuntu system will get what you need:

     % apt-get install debhelper
     % apt-get install fakeroot

To generate a configuration script and the necessary scriptlets required by the GNU autoconf(1) system, execute the following commands on the working directory:

     % autoreconf -fiv strutil

where, strutil is the name of the directory to where the working copy was checked out under the previous step. This command generates the configure script and other missing pieces that are normally distributed with the release Tar Balls, SRPMs and DSCs.

Make sure that `autoreconf --version' returns `2.61'. Otherwise, you may need to perform something like the following:

     % PATH="/usr/local/bin:$PATH"
     % autoreconf -fiv strutil

After reconfiguring the directory, the package can then be configured and built using the same instructions as are used for the Tar Ball, see Configuring the Tar Ball, and Building from the Tar Ball.

Do note, however, that make(1) will rebuild the documentation that is normally released with the package. Additional tools may be necessary for building the documentation. To avoid building and installing the documentation, use the --disable-devel option to configure described in Configuring the Tar Ball.

When configuring the package in a working directory and while working a change-compile-test cycle that involves configuration macros or documentation, I find it of great advantage to invoke the GNU configure options --enable-maintainer-mode, --enable-dependency-tracking and --disable-devel. The first of these three options will add maintainer-specific targets to any generated Makefile, the second option will invoke automatic dependency tracking within the Makefile so rebuilds after changes to macro, source or documentation files will be automatically rebuilt; and the last option will suppress rebuilding and reinstalling documentation manual pages and header files. Header files will still be available under the /usr/src directory.

6.2 Configuration

6.2.1 Configuring the Binary RPM

In general the binary RPM do not require any configuration, however, during installation it is possible to relocate some of the installation directories. This allows some degree of customization. Relocations that are available on the binary RPM are as follows:

strutil-LiS-core-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
strutil-streams-core-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
/lib/modules/2.4.20-28.7
This relocatable directory contains the kernel modules that provide the strutil STREAMS core, drivers and modules.48

strutil-LiS-info-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
strutil-streams-info-2.4.20-28.7-0.9.2.6-1.7.2.i686.rpm
/usr/include/strutil/2.4.20-28.7
This relocatable directory contains the kernel module exported symbol information that allows other kernel modules to be compiled against the correct version of the strutil package.49

strutil-dev-0.9.2.6-1.7.2.i686.rpm
(not relocatable)

strutil-devel-0.9.2.6-1.7.2.i686.rpm
/usr/lib
This relocatable directory contains strutil libraries.

/usr/include/strutil
This relocatable directory contains strutil header files.

strutil-doc-0.9.2.6-1.7.2.i686.rpm
/usr/share/doc
This relocatable directory contains all package specific documentation (including this manual). The subdirectory in this directory is the strutil-0.9.2.6 directory.

/usr/share/info
This relocatable directory contains info files (including the info version of this manual).

/usr/share/man
This relocatable directory contains manual pages.

strutil-LiS-lib-0.9.2.6-1.7.2.i686.rpm
strutil-streams-lib-0.9.2.6-1.7.2.i686.rpm
/usr/lib
This relocatable directory contains the run-time shared libraries necessary to run applications programs and utilities developed for OpenSS7 STREAMS Utilities.

/usr/share/locale
This relocatable directory contains the locale information for shared library files.

strutil-source-0.9.2.6-1.7.2.i686.rpm
/usr/src
This relocatable directory contains the source code.

strutil-LiS-util-0.9.2.6-1.7.2.i686.rpm
strutil-streams-util-0.9.2.6-1.7.2.i686.rpm
/usr/bin
This relocatable directory contains binary programs and utilities.

/usr/sbin
This relocatable directory contains system binary programs and utilities.

/usr/libexec
This relocatable directory contains test programs.

/etc
This relocatable directory contains init scripts and configuration information.
Installation

To install the binary RPM, See Installing the Binary RPM.

6.2.2 Configuring the Debian DEB

In general the binary DEB do not require any configuration.

Installation

To install the Debian DEB, See Installing the Debian DEB.

6.2.3 Configuring the Source RPM

When building from the source RPM (see Building from the Source RPM), the rebuild process uses a number of macros from the user's .rpmmacros file as described in rpm(8).

Following is an example of the ~/.rpmmacros file that I use for rebuilding RPMS:

     #
     # RPM macros for building rpms
     #
     
     %_topdir /usr/src/openss7.rpms
     
     %vendor OpenSS7 Corporation
     %distribution OpenSS7
     %disturl http://www.openss7.org/
     %packager Brian Bidulock <bidulock@openss7.org>
     %url http://www.openss7.org/
     
     %_signature gpg
     %_gpg_path /home/brian/.gnupg
     %_gpg_name openss7@openss7.org
     %_gpgbin /usr/bin/gpg
     
     %_source_payload w9.bzdio
     %_binary_payload w9.bzdio
     
     %_unpackaged_files_terminate_build 1
     %_missing_doc_files_terminate_build 1
     %_enable_debug_packages 1
     
     #
     # Template for debug information sub-package.
     # with our little addition of release
     #
     %debug_package \
     %ifnarch noarch\
     %global __debug_package 1\
     %package debug\
     Summary: Debug information for package %{name}\
     Group: Development/Debug\
     AutoReqProv: 0\
     %{?fullrelease:Release: %{fullrelease}}\
     %description debug\
     This package provides debug information for package %{name}.\
     Debug information is useful when developing applications that use this\
     package or when debugging this package.\
     %files debug -f debugfiles.list\
     %defattr(-,root,root)\
     %endif\
     %{nil}
     

When building from the source RPM (see Building from the Source RPM), it is possible to pass a number of additional configuration options to the rpmbuild(1) process.

The additional configuration options are described below.

Note that distributions that use older versions of rpm do not have the --with or --without options defined. To achieve the same effect as:

     --with someparm=somearg

do:

     --define "_with_someparm --with-someparm=somearg"

This is a generic description of common rpmbuild(1) options. Not all rpmbuild(1) options are applicable to all SRPMs. Options that are kernel module specific are only applicable to SRPMs that build kernel modules. STREAMS options are only applicable to SRPMs that provide or require STREAMS.

--define "_kversion $PACKAGE_KVERSION"
Specifies the kernel version other than the running kernel for which to build. If _kversion is not defined when rebuilding, the environment variable PACKAGE_KVERSION is used. If the environment variable PACKAGE_KVERSION is not defined, then the version of the running kernel (i.e. discovered with `uname -r') is used as the target version for kernel-dependent packages. This option can also be defined in an .rpmspec file using the macro name `_kversion'.

--with checks
--without checks
Enable or disable preinstall checks. Each packages supports a number of preinstall checks that can be performed by invoking the `check' target with automake(1). These currently consist of checking each kernel module for unresolved kernel symbols, checking for documentation for exported kernel module symbols, checking for documentation for exported library symbols, checking for standard options for build and installable programs, checking for documentation for built and installable programs. Normally these checks are only run in maintainer mode, but can be enabled and disabled with this option.

--with k-optimize=HOW
--without k-optimize
Specify `HOW' optimization, normal, size, speed or quick. size compiles kernel modules -Os, speed compiles kernel modules -O3, and quick compiles kernel modules -O0. The default is normal. Use with care.

--with cooked-manpages
--without cooked-manpages
Some systems do not like grefer(1) references in manual pages.50 This option will cook soelim(1), refer(1), tbl(1) and pic(1) commands from the manual pages and also strip groff(1) comments. The default is to leave manual pages uncooked: they are actually smaller that way.

--with public
--without public
Release public packages or private packages. This option has no effect on the strutil package. The default is to release public packages.

--with k-debug
--without k-debug
Specifies whether kernel debugging is to be performed on the build kernel modules. Mutually exclusive with test and safe below. This has the effect of removing static and inline attributes from functions and invoking all debugging macros in the code. The default is to not perform kernel debugging.

--with k-test
--without k-test
Specifies whether kernel testing is to be performed. Mutually exclusive with debug above and safe below. This has the effect of removing static and inline attributes from functions and invoking most debugging macros in the code. The default is to not perform kernel testing.

--with k-safe
--without k-safe
Specifies whether kernel saftey is to be performed. Mutually exclusive with debug and test above. This has the effect of invoking some more pedantic assertion macros in the code. The default is not to apply kernel safety.

--with k-inline
--without k-inline
Specifies whether kernel inline functions are to be placed inline. This has the effect of adding the -finline-functions flag to CFLAGS for compiling kernel modules. Linux 2.4 kernels are normally compiled -O2 which does not respect the inline directive. This compiles kernel modules with -finline-functions to get closer to -O3 optimization. For better optimization controls, See Configuring the Tar Ball.

--with k-modversions
--without k-modversions
Specifies whether kernel symbol versions are to be applied to symbols exported by package kernel modules. The default is to version exported module symbols. This package does not export symbols so this option has no effect.

--with devfs
--without devfs
Specifies whether the build is for a device file system daemon enabled system with autoloading, or not. The default is to build for devfsd(1) autoloading when CONFIG_DEVFS_FS is defined in the target kernel. The `rebuild' target uses this option to signal to the RPM spec file that the `dev' subpackage need not be built. This option does not appear when the package has no devices.

--with devel
--without devel
Specifies whether to build development environment packages such as those that include header files, static libraries, manual pages and texinfo(1) documentation. The default is to build development environment packages. This option can be useful when building for an embedded target where only the runtime components are desired.

--with tools
--without tools
Specifies whether user space packages are to be built. The default is to build user space packages. This option can be useful when rebuilding for multiple architectures and target kernels. The `rebuild' automake(1) target uses this feature when rebuilding for all available architectures and kernels, to rebuild user packages once per architecture instead of once per kernel.

--with modules
--without modules
Specifies whether kernel modules packages are to be built. The default is to build kernel module packages. This option can be useful when rebuilding for multiple architectures and target kernels. The `rebuild' automake(1) target uses this feature to rebuild for all available architectures and kernels.

--with lis
--without lis
Specifies that the package is to be rebuilt against Linux STREAMS. The default is to automatically identify whether LiS or streams is loaded on the build system and build accordingly.

--with lfs
--without lfs
Specifies that the package is to be rebuilt against Linux Fast-STREAMS. The default is to automatically identify whether LiS or streams is loaded on the build system and build accordingly.

In general, the default values of these options are sufficient for most purposes and no options need be provided when rebuilding the Source RPMs.

Build

To build from the source RPM, See Building from the Source RPM.

6.2.4 Configuring the Debian DSC

The Debian DSC can be configured by passing options in the environment variable BUILD_DEBOPTIONS. The options placed in this variable take the same form as those passed to the configure script, See Configuring the Tar Ball. For an example, See Building from the Debian DSC.

Build

To build from the Debian DSC, See Building from the Debian DSC.

6.2.5 Configuring the Tar Ball

All of the normal GNU autoconf(1) configuration options and environment variables apply. Additional options and environment variables are provided to tailor or customize the build and are described below.

6.2.5.1 Configure Options

This is a generic description of common configure options that are in addition to those provided by autoconf(1), automake(1), libtool(1) and gettext(1).

Not all configure options are applicable to all release packages. Options that are kernel module specific are only applicable to release packages that build kernel modules. STREAMS options are only applicable to release packages that provide or require STREAMS.

Following are the additional configure options, their meaning and use:

--enable-checks
--disable-checks
Enable or disable preinstall checks. Each release package supports a number of preinstall checks that can be performed by invoking the `check' target with make(1). These currently consist of checking each kernel module for unresolved kernel symbols, checking for documentation for exported kernel module symbols, checking for documentation for exported library symbols, checking for standard options for build and installable programs, checking for documentation for built and installable programs. Normally these checks are only run in maintainer mode, but can be enabled and disabled with this option.

--enable-autotest
--disable-autotest
Enable or disable pre- and post-installation testing. Each release package supports a number of autotest test suites that can be performed by invoking the `installcheck' target with make(1). These currently consist of running installed modules, commands and binaries against a number of specific test cases. Normally these checks are only run in maintainer mode, but can be enabled and disabled with this option.

--disable-compress-manpages
Compress manual pages with `gzip -9' or `bzip2 -9' or leave them uncompressed. The default is to compress manual pages with `gzip -9' or `bzip2 -9' if a single compressed manual page exists in the target installation directory (--mandir). This disables automatic compression.

--disable-public
Disable public release. This option is not usable on public releases and only has a usable effect on OpenSS7 STREAMS Utilities when the package is acquired from CVS. In particular, the STREAMS SS7/VoIP/ISDN/SIGTRAN Stacks (strss7-0.9a.7) release package has a large number of non-public components. Specifying this option will cause the package to build and install all private release components in addition to the public release components. This option affects all release packages. Most release packages do not have private release components.

--disable-initscripts
Disables the installation of init scripts. The default is to configure and install init scripts and their associated configuration files.

Although the default is to install init scripts, installation attempts to detect a System V init script configuration, and if one is not found, the init scripts are installed into the appropriate directories, but the symbolic links to the run level script directories are not generated and the script is not invoked. Therefore, it is safe to leave this option unchanged, even on distributions that do not support System V init script layout (such as NexusWare).


--disable-32bit-libs
Disables the build and install of 32-bit compatibility libraries and test binaries on 64-bit systems that support 32-bit compatibility. The default is to build and install 32-bit compatibility libraries and test binaries. This option can be usefule when configuring for an embedded target where only native shared libraries and binaries are desired.

--disable-devel
Disables the installation of development environment components such as header files, static libraries, manual pages and texinfo(1) documentation. The default is to install development environment components. This option can be useful when configuring for an embedded target where only the runtime components are desired, or when performing a edit-compile-test cycle.

--enable-tools
Specifies whether user space programs and libraries are to be built and installed. The default is to build and install user space programs and libraries. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under rpm(1) or dpkg(1). The `rebuild' automake(1) target uses this feature when rebuilding RPMs for all available architectures and kernels, to rebuild user packages once per architecture instead of once per kernel.

--enable-modules
Specifies whether kernel modules are to be built and installed. The default is to build and install kernel modules. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under rpm(1) or dpkg(1). The `rebuild' automake(1) target uses this feature to rebuild for all available architectures and kernels. This option has no effect for release packages that do not provide kernel modules.

--enable-arch
Specifies whether architectural dependent package components are to be built and installed. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under dpkg(1). The default is to configure, build and install architecture dependent package components. This option has no effect for release packages that do not provide architecture dependent components.

--enable-indep
Specifies whether architecture independent package components are to be built and installed. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under dpkg(1). The default is to configure, build and install architecture independent package components. This options has no effect for release packages that do not provide architecture independent components.

--enable-k-inline
Enable kernel inline functions. Most Linux kernels build without -finline-functions. This option adds the -finline-functions and -Winline flags to the compilation of kernel modules. Use with care. This option has no effect for release packages that do not provide kernel modules.

--enable-k-safe
Enable kernel module run-time safety checks. Specifies whether kernel safety is to be performed. This option is mutually exclusive with --enable-k-test and --enable-k-debug below. This has the effect of invoking some more pedantic assertion macros in the code. The default is not to apply kernel safety. This option has no effect for release packages that have are no kernel modules.

--enable-k-test
Enable kernel module run-time testing. Specifies whether kernel testing is to be performed. This option is mutually exclusive with --enable-k-safe above and --enable-k-debug below. This has the effect of remove static and inline attributes from functions and invoking most non-performance affecting debugging macros in the code. The default is not to perform kernel testing. This option has no effect for release packages that do not provide kernel modules.

--enable-k-debug
Enable kernel module run-time debugging. Specifies whether kernel debugging is to be performed. This option is mutually exclusive with --enable-k-safe and --enable-k-test above. This has the effect of removing static and inline attributes from functions and invoking all debugging macros in the code (including performance-affecting debug macros). The default is to not perform kernel debugging. This option has no effect for release packages that do not provide kernel modules.
--disable-k-modversions
Disable module versions on strutil symbols. Specifies whether kernel symbol versions are to be used on symbols exported from built strutil modules. The default is to provide kernel symbol versions on all exported symbols. This option has no effect for release packages that do not provide kernel modules.

--enable-devfs
--disable-devfs
Specifies whether the build is for a device file system daemon enabled system with autoloading, or not. The default is to build for devfsd(8) autoloading when CONFIG_DEVFS_FS is defined in the target kernel. The `reuild' automake(1) target uses this option to signal to the RPM spec file that the `dev' subpackage need not be built. This option has no effect for release packages that do not provide devices.

--with-gpg-user=GNUPGUSER
Specify the gpg(1) `GNUPGUSER' for signing RPMs and tarballs. The default is the content of the environment variable GNUPGUSER. If unspecified, the gpg(1) program will normally use the user name of the account invoking the gpg(1) program. For building source RPMs, the RPM macro `_gpg_name' will override this setting.

--with-gpg-home=GNUPGHOME
Specify the `GNUPGHOME' directory for signing RPMs and tarballs. The default is the user's ~/.gpg directory. For building source RPMs, the RPM macro `_gpg_path' will override this setting.

--with-pkg-epoch=EPOCH
Specifies the epoch for the package. This is neither used for rpm(1) nor dpkg(1) packages, it applies to the tarball release as a whole. The default is the contents of the .pkgepoch file in the release package source directory or, if that file does not exist, zero (0).

--with-pkg-release=RELEASE
Specifies the release for the package. This is neither used for rpm(1) nor dpkg(1) packages, it applies to the tarball release as a whole. The default is the contents of the .pkgrelease file in the release package source directory or, if that file does not exist, one (1). This is the number after the last point in the package version number.

--with-pkg-distdir=DIR
Specifies the distribution directory for the package. This is used by the maintainer for building distributions of tarballs. This is the directory into which archives are copied for distribution. The default is the top build directory.

--with-cooked-manpages
Convert manual pages to remove macro dependencies and grefer(1) references. Some systems do not like grefer(1) references in manual pages.51 This option will cook soelim(1), refer(1), tbl(1) and pic(1) commands from the manual pages and also strip groff(1) comments. The default is to leave manual pages uncooked (they are actually smaller that way).

--with-rpm-epoch=PACKAGE_EPOCH
Specify the `PACKAGE_EPOCH' for the RPM spec file. The default is to use the RPM epoch contained in the release package file .rpmepoch.

--with-rpm-release=PACKAGE_RPMRELEASE
Specify the `PACKAGE_RPMRELEASE' for the RPM spec file. The default is to use the RPM release contained in the release package file .rpmrelease.

--with-rpm-extra=PACKAGE_RPMEXTRA
Specify the `PACKAGE_RPMEXTRA' extra release information for the RPM spec file. The default is to use the RPM extra release information contained in the release package file .rpmextra. Otherwise, this value will be determined from automatic detection of the RPM distribution.

--with-rpm-topdir=PACKAGE_RPMTOPDIR
Specify the `PACKAGE_RPMTOPDIR' top directory for RPMs. If specified with a null `PACKAGE_RPMTOPDIR', the default directory for the RPM distribution will be used. If this option is not provided on the command line, the top build directory will be used as the RPM top directory as well.

--with-deb-epoch=EPOCH
Specify the `PACKAGE_DEBEPOCH' for the DEB control file. The default is to use the DEB epoch contained in the release package file .debepoch.

--with-deb-release=RELEASE
Specify the `PACKAGE_DEBRELEASE' for the DEB control file. The default is to use the DEB release contained in the release package file .debrelease.

--with-deb-topdir=DIR
Specify the `PACKAGE_DEBTOPDIR' top directory for DEBs. If specified with a null `PACKAGE_DEBTOPDIR', the default directory for the DEB distribution will be used. If this option is not provided on the command line, the top build directory will be used as the DEB top directory as well.

--with-k-release=PACKAGE_KRELEASE
Specify the `PACKAGE_KRELEASE' release of the Linux kernel for which the build is targeted. When not cross compiling, if this option is not set, the build will be targeted at the kernel running in the build environment (e.g., `uname -r'). When cross-compiling this option must be specified or the configure script will generate an error and terminate.

--with-k-linkage=PACKAGE_KLINKAGE
Specify the `PACKAGE_KLINKAGE' for kernel module linkage. This can be one of the following:
  • `loadable' – loadable kernel modules
  • `linkable' – linkable kernel objects
The default is to build loadable kernel modules.

--with-k-modules=K-MODULES-DIR
Specify the `K-MODULES-DIR' directory to which kernel modules will be installed. The default is based on the option --with-k-release, --with-k-prefix and --with-k-rootdir. The default is DESTDIR/K-MODULES-DIR which is typically DESTDIR/lib/modules/PACKAGE_KRELEASE/. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-build=K-BUILD-DIR
Specify the `K-BUILD-DIR' base kernel build directory in which configured kernel source resides. The default is DESTDIR/K-MODULES-DIR/build. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-source=K-SOURCE-DIR
Specify the `K-SOURCE-DIR' base kernel build directory in which configured kernel source resides. The default is DESTDIR/K-MODULES-DIR/source. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-modver=K-MODVER-FILE
Specify the `K-MODVER-FILE' kernel module versions file. The default is K-BUILD-DIR/Module.symvers. This file is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-sysmap=K-SYSMAP-FILE
Specify the `K-SYSMAP-FILE' kernel system map file. The default is K-BUILD-DIR/System.map. This file is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-archdir=K-ARCHDIR
Specify the `K-ARCHDIR' kernel source architecture specific directory. The default is DESTDIR/K-SOURCE-DIR/arch. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-machdir=K-MACHDIR
Specify the `K-MACHDIR' kernel source machine specific directory. The default is DESTDIR/K-SOURCE-DIR/target_cpu. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-config=K-CONFIG
Specify the `K-CONFIG' kernel configuration file. The default is BOOT/config-K-RELEASE. This configuration file is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.

--with-k-optimize=HOW
--without-k-optimize
Specify `HOW' optimization, normal, size, speed or quick. size compiles kernel modules -Os, speed compiles kernel modules -O3, and quick compiles kernel modules -O0. The default is normal. Use with care. The most common use of this option is to specify --with-k-optimize=speed --disable-k-safe to compile for maximum performance. Nevertheless, even these setting are ricing and the resulting kernel modules will only be about 5% faster.

--with-lis[=LIS-DIR]
--without-lis
Specify the `LIS-DIR' directory in which to find LiS headers. Also specifies that the build is to be made against Linux STREAMS. The default is /usr/include/LiS if it exists, `no' otherwise. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message. This option has no effect on release packages that do not use the STREAMS subsystem.

--with-lfs[=LFS-DIR]
--without-lfs
Specify the `LFS-DIR' directory in which to find LfS headers. Also specifies that the build is to be made against Linux Fast-STREAMS. The default is /usr/include/streams if it exists, `no' otherwise. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message. This option has no effect on release packages that do not use the STREAMS subsystem.

--with-strconf-master=STRCONF_CONFIG
Specify the `STRCONF_CONFIG' file name to which the configuration master file is written. The default is Config.master. This option has no effect on release packages that do not use the STREAMS subsystem and the strconf scripts. This option should not be specified when configuring the master package as the setting for all add-on packages will conflict.

--with-base-major=STRCONF_MAJBASE
Start numbering for major devices at `STRCONF_MAJBASE'. The default is `230'. This option has no effect on release packages that do not use the STREAMS subsystem and the strconf scripts. This option should not be specified when configuring the master package as the setting for all add-on packages will conflict.

6.2.5.2 Environment Variables

Following are additional environment variables to configure, their meaning and use:

GPG
GPG signature command. This is used for signing distributions by the maintainer. By default, configure will search for this tool.

GNUPGUSER
GPG user name. This is used for signing distributions by the maintainer.

GNUPGHOME
GPG home directory. This is used for signing distributions by the maintainer.

GPGPASSWD
GPG password for signing. This is used for signing distributions by the maintainer. This environment variable is not maintained by the configure script and should only be used on an isolated system.

SOELIM
Roff source elimination command, soelim(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper soelim(1) command. By default, configure will search for this tool.

REFER
Roff references command, refer(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper refer(1) command. By default, configure will search for this tool.

TBL
Roff table command, tbl(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper tbl(1) command. By default, configure will search for this tool.

PIC
Roff picture command, pic(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper pic(1) command. By default, configure will search for this tool.

GZIP
Default compression options provided to GZIP_CMD.

GZIP_CMD
Manpages (and kernel modules) compression commands, gzip(1). This is only necessary when the option --without-compressed-manpages has not been specified and configure cannot find the proper gzip(1) command. By default, configure will search for this tool.

BZIP2
Default compression options provided to BZIP2_CMD

BZIP2_CMD
Manpages compression commands, bzip2(1). This is only necessary when the option --without-compressed-manpages has not been specified and configure cannot find the proper bzip2(1) command. By default, configure will search for this tool.

MAKEWHATIS
Manpages apropros database rebuild command, makewhatis(8). By default, configure will search for this tool. By default, configure will search for this tool.

CHKCONFIG
Chkconfig command, chkconfig(8). This was used for installation of init scripts. All packages now come with init_install(8) and init_remove(8) scripts used to install and remove init scripts on both RPM and Debian systems.

RPM
Rpm command, rpm(1). This is only necessary for RPM builds. By default, configure will search for this tool.

RPMBUILD
Build RPM command, rpmbuild(1). This is only necessary for RPM builds. By default, configure will search for this tool. rpm(1) will be used instead of rpmbuild(1) only if rpmbuild(1) cannot be found.

DPKG
Dpkg comand, dpkg(1). This command is used for building Debian packages. By default, configure will search for this tool.

DPKG_SOURCE
Dpkg-source command, dpkg-source(1). This command is used for building Debian dsc packages. By default, configure will search for this tool.

DPKG_BUILDPACKAGE
Dpkg-buildpackage command, dpkg-buildpackage(1). This command is used for building Debian deb packages. By default, configure will search for this tool.

DEB_BUILD_ARCH
Debian build architecture. This variable is used for building Debian packages. The default is the autoconf build architecture.

DEB_BUILD_GNU_CPU
Debian build cpu. This variable is used for building Debian packages. The default is the autoconf build cpu.

DEB_BUILD_GNU_SYSTEM
Debian build os. This variable is used for building Debian packages. The default is the autoconf build os.

DEB_BUILD_GNU_TYPE
Debian build alias. This variable is used for building Debian packages. The default is the autoconf build alias.

DEB_HOST_ARCH
Debian host architecture. This variable is used for building Debian packages. The default is the autoconf host architecture.

DEB_HOST_GNU_CPU
Debian host cpu. This variable is used for building Debian packages. The default is the autoconf host cpu.

DEB_HOST_GNU_SYSTEM
Debian host os. This variable is used for building Debian packages. The default is the autoconf host os.

DEB_HOST_GNU_TYPE
Debian host alias. This variable is used for building Debian packages. The default is the autoconf host alias.

LDCONFIG
Configure loader command, ldconfig(8). Command used to configure the loader when libraries are installed. By default, configure will search for this tool.

DESTDIR
Cross build root directory. Specifies the root directory for build and installation. For example, for NexusWare cross-builds, this is set to environment variable NEXUSWARE_PREFIX on configuration to point to the root of the cross-build tree for both configuration and installation.

DEPMOD
Build kernel module dependencies command, depmod(8). This is used during installation of kernel modules to a running kernel to rebuild the modules dependency database. By default, configure will search for this tool.

MODPROBE
Probe kernel module dependencies command, modprobe(8). This is used during installation of kernel modules to a running kernel to remove old modules. By default, configure will search for this tool.

LSMOD
List kernel modules command, lsmod(8). This is used during installation of kernel modules to a running kernel to detect old modules for removal. By default, configure will search for this tool.

LSOF
List open files command, lsof(1). This is used during installation of kernel modules to a running kernel to detect old modules for removal. Processes owning the old kernel modules will be killed and the module removed. If the process restarts, the new module will be demand loaded. By default, configure will search for this tool.

GENKSYMS
Generate kernel symbols command, genksyms(8). This is used for generating module symbol versions during build. By default, configure will search for this tool.

KGENKSYMS
Linux 2.6 generate kernel symbols command, genksyms(8). This is used for generating module symbol version during build. By default, configure will search for this tool.

OBJDUMP
Object dumping command, objdump(1). This is used for listing information about object files. By default, configure will search for this tool.

NM
Object symbol listing command, nm(1). This is used for listing information about object files. By default, configure will search for this tool.

MODPOST_CACHE
Cache file for modpost(1). The version of the modpost.sh script that ships with each package can cache information to a cache file to speed multiple builds. This environment variable is used to specify a cache file.

AUTOM4TE
Autom4te command, autom4te(1). This is the executable used by autotest for pre- and post-installation checks. By default, configure will search for this tool.

AUTOTEST
Autotest macro build command, autom4te(1). This is the executable used by autotest for pre- and post-installation checks. By default, configure will search for this tool.
6.2.5.3 Build

To build from the tar ball, See Building from the Tar Ball.

6.3 Building

6.3.1 Building from the Source RPM

If you have downloaded the necessary source RPM (see Downloading the Source RPM), then the following instructions will rebuild the binary RPMs on your system. Once the binary RPMs are rebuilt, you may install them as described above (see Installing the Binary RPM).

The source RPM is rebuilt to binary RPMs as follows:

     % wget http://www.openss7.org/rpms/SRPMS/strutil-0.9.2.6-1.src.rpm
     % rpmbuild --rebuild -vv strutil-0.9.2.6-1.src.rpm

The rebuild process can also recognize a number of options that can be used to tweak the resulting binaries, See Configuring the Source RPM. These options are provided on the rpm(1) command line. For example:

     % rpmbuild --rebuild -vv --target athlon-redhat-linux \
       --define "_kversion 2.4.20-28.7" \
       --with lfs -- strutil-0.9.2.6-1.src.rpm

will rebuild binary RPM for the `2.4.20-28.7' kernel for the `athlon' architecture against the Linux Fast-STREAMS STREAMS package. 52

Installation

To install the resulting binary RPM, See Installing the Binary RPM.

6.3.2 Building from the Debian DSC

If you have downloaded the necessary Debian DSC (see Downloading the Debian DSC), then the following instructions will rebuild the binary DEBs on your system. Once the binary DEBs are rebuilt, you may install them as described above (see Installing the Debian DEB).

The Debian DSC is rebuilt to binary DEBs as follows:

     % wget http://www.openss7.org/debian/strutil_0.9.2.6-0.dsc
     % wget http://www.openss7.org/debian/strutil_0.9.2.6-0.tar.gz
     % dpkg-buildpackage -v strutil_0.9.2.6-0.dsc

The rebuild process can also recognize a number of options that can be used to tweak the resulting binaries, See Configuring the Debian DSC. These options are provided in the environment variable BUILD_DPKGOPTIONS and have the same form as the options to configure, See Configuring the Tar Ball. For example:

     % BUILD_DEBOPTIONS='
             --with-lfs
             --with-k-release=2.4.20-28.7
             --host=athlon-debian-linux-gnu'
       dpkg-buildpackage -v \
       strutil_0.9.2.6-0.dsc

will rebuild binary DEB for the `2.4.20-28.7' kernel for the `athlon' architecture against the Linux Fast-STREAMS STREAMS package. 53

Installation

To install the resulting binary DEB, See Installing the Debian DEB.

6.3.3 Building from the Tar Ball

If you have downloaded the tar ball (see Downloading the Tar Ball), then the following instructions will rebuild the package on your system. (Note that the build process does not required root privilege.)

6.3.3.1 Native Build

Following is an example of a native build against the running kernel:

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure
     % make
     % popd

6.3.3.2 Cross-Build

Following is an example for a cross-build. The kernel release version must always be specified for a cross-build.54 If you are cross-building, specify the root for the build with environment variable DESTDIR. The cross-compile host must also be specified if different from the build host. Either the compiler and other tools must be in the usual places where GNU autoconf(1) can find them, or they must be specified with declarations such as `CC=/u5/NexusWare24/ppc-linux/gcc' on the configure command line. Look in the file configure.nexusware in the release package for an example.

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure DESTDIR="/some/other/root" \
     	--with-k-release=2.4.18 --host sparc-linux
     % make
     % popd

6.3.3.3 NexusWare Build

Additional support is provided for cross-building for the Performance Technologies Inc. NexusWare embedded target for the CPC-384, CPC-388 and CPC-396 cards. A configuration script wrapper (configure.nexusware) is provided to simplify the cross-build operation for these targets. The following steps describe the process:

  1. Follow the normal NexusWare instructions for rebuilding a generic kernel and flash image as follows: (Note that I keep my NexusWare build in /u5/NexusWare24.)

              % pushd /u5/NexusWare24
              % source SETUP.sh
              % make
              % popd
         

    For more recent NexusWare releases, the method for rebuilding a kernel is a little different as follows:

              % pushd /u5/NexusWare80
              % ./nexus 2.4
              % ./nexus 8260
              % ./nexus quick
              % . SETUP.sh
              % popd
         

  2. Next download, unpack (see Downloading the Tar Ball) and configure (see Configuring the Tar Ball) using the provided configure.nexusware wrapper for configure. This wrapper simply tells the configure script where to find the NexusWare sources and which NexusWare cross-building tools to use for a cross-compile.55

    Any of the normal configure script options (see Configuring the Tar Ball) can be used on the same line as `./configure.nexusware'. One of particular interest to embedded targets is --with-k-optimize=size to attempt to reduce the size of the kernel modules.

    You must specify the kernel version of the kernel for which you are configuring. Add the --with-k-release=2.4.18 option for older NexusWare releases, --with-k-release=2.4.25 or --with-k-release=2.6.12 for more current NexusWare releases.

  3. Install as normal (see Installing the Tar Ball), however, for embedded targets the `install-strip' automake(1) target should be used instead of the `install' automake(1) target. The `install-strip' target will strip unnecessary symbols from kernel modules and further reduce the size in the root file system flash image.

Following is what I use for configuration and installation: (My NexusWare tree is rooted at /u5/NexusWare.)

     % pushd /u5/NexusWare80
     % ./nexus 2.4
     % ./nexus 8260
     % ./nexus quick
     % . SETUP.sh
     % popd
     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure.nexusware --with-k-release=2.4.25 --with-k-optimize=size
     % make
     % make DESTDIR="$NEXUSWARE_PREFIX" install-strip
     % popd

Once built and installed in the NexusWare directory, you will have to (currently) hand edit a .spec file to include the components you want in the NexusWare root file system. If you are cross-building for NexusWare you should already know what that means. Objects that you might be interested in copying to the root file system are kernel modules that were installed in $NEXUSWARE_PREFIX/lib/modules/2.4.18/strutil, libraries installed in $NEXUSWARE_PREFIX/usr/lib and utility functions installed in $NEXUSWARE_PREFIX/usr/bin and $NEXUSWARE_PREFIX/usr/sbin and test programs in $NEXUSWARE_PREFIX/usr/libexec. If you would prefer that these programs be installed in $NEXUSWARE_PREFIX/lib, $NEXUSWARE_PREFIX/bin, $NEXUSWARE_PREFIX/sbin and $NEXUSWARE_PREFIX/libexec, (say because you want to remote mount the /usr directory after boot), then specify the --exec-prefix=/ option to `./configure.nexusware'.

Because NexusWare does not include an /etc/modules.conf file by default, it will be necessary to add one or edit your rc.4 file to insmod(8) the necessary strutil modules at boot time.

NexusWare does not configure its kernels for CONFIG_KMOD, so any kernel modules must be loaded by the rc.4 init script at boot. On more recent NexusWare releases, the init scripts will be installed in $NEXUSWARE_PREFIX/etc/rc.d/init.d/ but you must manually edit your rc.4 script to invoke these scripts.

Once you have completed the necessary .spec and rc.4 file entries, you need to rebuild the `generic' kernel flash image once more for these objects to be included in the flash file system. It is important that this second build of the kernel image be the same as the first.

When modifying and rebuilding a NexusWare kernel, it will be necessary to rebuild and install strutil. Simply perform the last `make install-strip' stage or start again with `./configure.nexusware'. You can place the unpacked tarball in $NEXUSWARE_PREFIX/usr/src/strutil, and add the following to the top-level NexusWare Makefile to make the build process a single step process instead of dual pass:

     all:
     ...
             (cd kernels/generic; $(MAKE) depend)
             (cd usr/src/pcmcia-cs-3.2.1; $(MAKE) config)
             (cd kernels/generic; $(MAKE))
             (cd usr/src/pcmcia-cs-3.2.1; $(MAKE) pti)
             (cd usr/src/pti; $(MAKE))
             (cd drivers; $(MAKE))
             (cd utility; $(MAKE))
     #       uncomment for LiS build
     #       (cd usr/src/LiS; ./configure.nexusware; $(MAKE) install-strip)
     #       uncomment for LfS build
             (cd usr/src/streams; ./configure.nexusware; $(MAKE) install-strip)
     #       uncomment for strutil build
     #       (cd usr/src/strutil; ./configure.nexusware; $(MAKE) install-strip)
             (cd build/generic; $(MAKE))
     ...

Another, perhaps simpler approach, is to make the necessary edits to the NexusWare top-level Makefile and .spec and rc.4 files, download and unpack the tar ball into the NexusWare directory, and build the NexusWare flash image as normal:

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % pushd /u5/NexusWare24
     % source SETUP.sh
     % pushd usr/src
     % tar -xjvf ${DIRSTACK[2]}/strutil-0.9.2.6.tar.bz2
     % ln -sf strutil-0.9.2.6 strutil
     % popd
     % make
     % popd

The situation is a little more complex for recent NexusWare releases.

6.4 Installing

6.4.1 Installing the Binary RPM

If you have downloaded the necessary binary RPMs (see Downloading the Binary RPM), or have rebuilt binary RPMs using the source RPM (see Building from the Source RPM), then the following instructions will install the RPMs on your system. For additional information on rpm(1), see rpm(8).

     % pushd RPMS/i686
     % rpm -ihv strutil-*-0.9.2.6-1.7.2.i686.rpm

You must have the correct binary RPMs downloaded or built for this to be successful.

Some of the packages are relocatable and can have final installation directories altered with the --relocate option to rpm(1), see rpm(8). For example, the following will relocate the documentation and info directories:

     % pushd RPMS/i686
     % rpm -ihv \
             --relocate '/usr/share/doc=/usr/local/share/doc' \
             --relocate '/usr/share/info=/usr/local/share/info' \
             -- strutil-doc-0.9.2.6-1.7.2.i686.rpm

The previous example will install the strutil-doc package by will relocate the documentation an info directory contents to the /usr/local version.

6.4.2 Installing the Debian DEB

If you have downloaded the necessary Debian DEBs (see Downloading the Debian DEB), or have rebuild binary DEBs using the Debian DSC (see Building from the Debian DSC), then the following instructions will install the DEBs on your system. For additional information see dpkg(8).

     % pushd debian
     % dpkg -iv strutil-*_0.9.2.6-0_*.deb

You must have the correct .deb files downloaded or build for this to be successful.

6.4.3 Installing the Tar Ball

After the build process (see Building from the Tar Ball), installation only requires execution of one of two automake(1) targets:

`make install'
The `install' automake(1) target will install all the components of the package. Root privilege is required to successfully invoke this target.

`make install-strip'
The `install-strip' automake(1) target will install all the components of the package, but will strip unnecessary information out of the objects and compress manual pages. Root privilege is required to successfully invoke this target.

6.5 Removing

6.5.1 Removing the Binary RPM

To remove an installed version of the binary RPMs (whether obtained from the OpenSS7 binary RPM releases, or whether created by the source RPM), execute the following command:

     % rpm -evv `rpm -qa | grep '^strutil-'`

For more information see rpm(1).

6.5.2 Removing the Debian DEB

To remove and installed version of the Debian DEB (whether obtained from the OpenSS7 binary DEB releases, or whether created by the Debian DSC), execute the following command:

     % dpkg -ev `dpkg -l | grep '^strutil-'`

For more information see dpkg(8).

6.5.3 Removing the Source RPM

To remove all the installed binary RPM build from the source RPM, see Removing the Binary RPM. Then simply remove the binary RPM package files and source RPM file. A command such as:

     % find / -name 'strutil-*.rpm' -type f -print0 | xargs --null rm -f

should remove all strutil RPMs from your system.

6.5.4 Removing the Debian DSC

To remove all the installed binary DEB build from the Debian DSC, see Removing the Debian DEB. Then simply remove the binary DEB package files and Debian DSC file. A command such as:

     % find / \( -name 'strutil-*.deb' \
              -o -name 'strutil-*.dsc' \
              -o -name 'strutil-*.tar.* \
              \) -type f -print0 | xargs --null rm -f

should remove all strutil DEBs, DSCs and TARs from your system.

6.5.5 Removing the Tar Ball

To remove a version installed from tar ball, change to the build directory where the package was built and use the `uninstall' automake(1) target as follows:

     % cd /usr/src/strutil
     % make uninstall
     % cd ..
     % rm -fr strutil-0.9.2.6
     % rm -f strutil-0.9.2.6.tar.gz
     % rm -f strutil-0.9.2.6.tar.bz2

If you have inadvertently removed the build directory and, therefore, no longer have a configured directory from which to execute `make uninstall', then perform all of the steps for configuration and installation (see Installing the Tar Ball) except the final installation and then perform the steps above.

6.6 Loading

6.6.1 Normal Module Loading

When OpenSS7 STREAMS Utilities installs, modules and drivers belonging to release packages are normally configured for demand loading. The `install' and `install-strip' automake(1) targets will make the necessary changes to the /etc/modules.conf file and place the modules in an appropriate place in /lib/modules/2.4.20-28.7/strutil. The `make install' process should have copied the kernel module files streams-*.o to the directory /lib/modules/2.4.20-28.7/strutil. This means that to load any of these modules, you can simply execute, for example, `modprobe stream-somedriver'.56

6.6.1.1 Linux Fast-STREAMS Module Loading

The strutil demand load system supports both the old kerneld and the new kmod mechanisms for demand loading kernel modules.

The convention for strutil kernel loadable object files is:

  • Their name start with "streams-".
  • They are placed in /lib/modules/2.4.20-28.7/streams/, where `2.4.20-28.7' is an example kernel version.

If your kernel has been built using the kerneld daemon, then strutil kernel modules will automatically load as soon as the STREAMS module is pushed or the driver is opened. The `make install' process makes the necessary changes to the /etc/modules.conf file. After the install, you will see lines like the following added to your /etc/modules.conf file:

     prune modules.strutil
     if -f /lib/modules/`uname -r`/modules.strutil
     include /lib/modules/`uname -r`/modules.strutil
     endif

which will provide for demand loading of the modules if they have been built and installed for the running kernel. The /lib/modules/`uname -r`/modules.strutil file looks like this:

     alias char-major-245  streams-some_driver
     alias char-major-246  streams-other_driver

Note that STREAMS modules are not listed in this file, but will be loaded by name using kerneld if available.

Linux Fast-STREAMS has a wider range of kernel module loading mechanisms than is provided by the deprecated LiS. For mechanisms used for kernel module loading under Linux Fast-STREAMS, See About This Manual.

6.6.2 NexusWare Module Loading

Under exceptional circumstances, such as a NexusWare build, it is necessary to hand-edit a .spec and rc.4 file to load the modules at boot time.57

6.6.2.1 Linux STREAMS Module Loading

LiS is deprecated and this section has been deleted.

6.7 Maintenance

6.7.1 Makefile Targets

automake(1) has many targets, not all of which are obvious to the casual user. In addition, OpenSS7 automake(1) files have additional rules added to make maintaining and releasing a package somewhat easier. This list of targets provides some help with what targets can be invoked, what they do, and what they hope to achieve. The available targets are as follows:

6.7.1.1 User Targets

The following are normal targets intended to be invoked by installers of the package. They are concerned with compiling, checking the compile, installing, checking the installation, and removing the package.

`[all]'
This is also the default target. It compiles the package and all release packages selected by configure. This is performed after configuring the source with `configure'. A Makefile stub is provided so that if the package has not had autoreconf(1) run (such as when checked out from CVS, the package will attempt to run `autoreconf -fiv'.

All OpenSS7 Project packages are configured without maintainer mode and without dependency tracking by default. This speeds compilation of the package for one-time builds. This also means that if you are developing using the source package (edit-compile-test cycle), changes made to source files will not cause the automatic rebuilding due to dependencies. There are two ways to enable dependency tracking: specify --enable-maintainer-mode to configure; or, specify --enable-dependency-tracking to configure. I use the former during my edit-compile-test cycle.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.


`check'
All OpenSS7 Project release packages provide check scripts for the check target. This step is performed after compiling the package and will run all of the `check' programs against the compiled binaries. Which checks are performed depends on whether --enable-maintainer-mode was specified to configure. If in maintainer mode, checks that assist with the release of the package will be run (such as checking that all manual pages load properly and that they have required sections.) We recommend running the check stage before installing, because it catches problems that might keep the installed package from functioning properly.

Another way to enable the greater set of checks, without invoking maintainer mode, is to specify --enable-checks to configure. For more information, see Pre-installation Checks.

This is a standard GNU automake(1) makefile target, although the functions performed are customized for the OpenSS7 Project. This target does not require root privilege.


`install'
`install-strip'
The `install' target installs the package by installing each release package. This target also performs some actions similar to the pre- and post-install scripts used by packaging tools such as rpm(1) or dpkg(1). The `install-strip' target strips unnecessary symbols from executables and kernel modules before installing.

This is a standard GNU automake(1) makefile target. This target requires root privilege.


`installcheck'
All OpenSS7 Project packages provide test scripts for the `installcheck' target. Test scripts are created and run using autotest (part of the autoconf(1) package). Which test suites are run and how extensive they are depends on whether --enable-maintainer-mode was specified to configure. When in maintainer mode, all test suites will be run. When not in maintainer mode, only a few post-install checks will be performed, but the test suites themselves will be installed in /usr/libexec/strutil58 for later use.

This is a standard GNU automake(1) makefile target. This target might require root privilege. Tests requiring root privilege will be skipped when run as a regular user. Tests requiring regular account privileges will be skipped when run as root.


`retest'
To complement the `installcheck' target above, all OpenSS7 Project packages provide the `retest' target as a means to rerun failed conformance test suite test cases. The `retest' target is provided because some test cases in the test suites have delicate timing considerations that allow them to fail sporadically. Invoking this target will retest the failed cases until no cases that are not expected failures remain.

This is an OpenSS7 Project specific makefile target. As with `installcheck', this target might require root privilege. Tests requiring root privilege will be skipped when run as a regular user. Tests requiring regular account privileges will be skipped when run as root.


`uninstall'
This target will reverse the steps taken to install the package. This target also performs pre- and post- erase scripts used by packaging tools such as rpm or dpkg. You need to have a configured build directory from which to execute this target, however, you do not need to have compiled any of the files in that build directory.59

The `uninstall' target unfortunately removes add-on packages in the same order in which they were installed. This is not good for the OpenSS7 Master Package, where the `remove' target should be used instead.

This is a standard GNU automake(1) makefile target. This target requires root privilege.


`remove'
This target is like `uninstall' with the exception that it removes add-on packages in the reverse order that installation was performed.60

This is an OpenSS7 Project specific makefile target. This target requires root privilege.

6.7.1.2 Maintainer Targets

The following targets are targets intended for use by maintainers of the package, or those responsible for release and packaging of a derivative work of the package. Some of these targets are only effective when maintainer mode has been invoked (--enable-maintainer-mode specified to configure.)

`dist'
Creates a distribution package (tarball) in the top level build directory. OpenSS7 Project packages distribute two archives: a `gzip tar' archive and a `bzip tar' archive. These archives will have the name strutil-0.9.2.6.tar.gz and strutil-0.9.2.6.tar.bz2.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.


`distcheck'
This target is intended for use when releasing the package. It creates the tar(1) archives above and then unpacks the tarball in a source directory, configures in a separate build directory, compiles the package, installs the package in a separate install directory, tests the install package to ensure that some components work, and, finally, uses the unpacked source tree to build another tarball. If you have added or removed files from the package, this is a good way to ensure that everything is still stable for release.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.

6.7.1.3 Clean Targets
`mostlyclean'
Cleans out most of the files from the compile stage. This target is helpful if you have not enabled dependency tracking and need to recompile with changes.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.


`clean'
Cleans all the files from the build directory generated during the `make [all]' phase. It does not, however, remove files from the directory left there from the configure run. Use the `distclean' target to remove those too.

This is a standard GNU automake(1) makefile target. This target might require root privilege if the `installcheck' target or the testsuite was invoked with root privilege (leaving files belonging to root).


`distclean'
This target cleans out the directories left behind by `distcheck' and removes all the configure and generated files from the build directory. This will effectively remove all the files in the build directory, with the except of files that belong to you or some other process.

This is a standard GNU automake(1) makefile target. This target might require root privilege if the `installcheck' target or the testsuite was invoked with root privilege (leaving files belonging to root).


`maintainer-clean'
This target not only removes files from the build directory, it removes generated files from the source directory as well. Care should be taken when invoking this target, because it removes files generated by the maintainer and distributed with the archive that might require special tools to regenerate. These special tools might only be available to the maintainer.61 It also means that you probably need a full blown Linux system to rebuild the package. For more information, see Downloading from CVS.

This is a standard GNU automake(1) makefile target. This target might require root privilege if the `installcheck' target or the testsuite was invoked with root privilege (leaving files belonging to root).


`check-clean'
This target removes log files left behind by the `check' target. By default, the check scripts append to log files in the top level build directory. This target can be used to clean out those log files before the next run.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

6.7.1.4 Release Targets

The following are targets used to generate complete releases into the package distribution directory. These are good for unattended and NFS builds, which is what I use them for. Also, when building from atop multiple packages, these targets also recurse down through each package.

`release'
Build all of the things necessary to generate a release. On an rpm(1) system this is the distribution archives, the source rpm, and the architecture dependent and architecture independent binary rpms. All items are placed in the package distribution directory that can be specified with the --with-pkg-distdir=DIR option to configure.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`forced-release'
The `release' target will not regenerate any files that already exist in the package distribution directory. This forced target will.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`release-sign'
You will be prompted for a password, unless to specify it to make with the GNUPGPASS variable. For unattended or non-interactive builds with signing, you can do that as: `make GNUPGPASS=mypasswd release-sign'

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`forced-release-sign'
The `release-sign' target will not regenerate any files that already exist in the package distribution directory. This forced target will.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`release-clean'
This target will remove all distribution files for the current package from the package distribution directory.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

6.7.1.5 Logging Targets

For convenience, to log the output of a number of targets to a file, log targets are defined. The log file itself is used as the target to make, but make invokes the target minus a .log suffix. So, for example, to log the results of target `foo', invoke the target `foo.log'. The only target that this does not apply to is `compile.log'. When you invoke the target `compile.log' a simple automake(1) is invoked and logged to the file compile.log. The `foo.log' rule applies to all other targets. This does not work for all targets, just a selected few.62 Following are the logging targets:

Common Logging Targets

Common logging targets correspond to normal user automake(1) makefile targets as follows:

`compile.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `[all]'.

`check.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `check'.

`install.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `install'.

`installcheck.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `installcheck'.

`uninstall.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `uninstall'.

`remove.log'
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Project `remove' target.
Maintainer Logging Targets

Maintainer logging targets correspond to maintainer mode automake(1) makefile targets as follows:

`dist.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `dist'.

`distcheck.log'
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target `distcheck'.

`srpm.log'
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Project `srpm' target.

`rebuild.log'
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Project `rebuild' target.

`resign.log'
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Project `resign' target.

`release.log'
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Project `release' target.

`release-sign.log'
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Project `release-sign' target.

If you want to add one, simply add it to LOGGING_TARGETS in Makefile.am.

6.7.1.6 Problem Report Targets

To ease problem report generation, all logging targets will automatically generate a problem report suitable for mailing in the file target.pr for target `target.log'. This problem report file is in the form of an email and can be sent using the included send-pr script or by invoking the `send-pr' makefile target.

There are two additional problem report targets:

`pr'
The `pr' target is for independently generating a problem report outside of the build or installation process. The target will automatically generate a problem report skeleton suitable for editing and mailing in the file problem.pr. This problem report file is in the form of an email and can be edited and sent directly, or sent using the included send-pr script or by invoking the `send-pr' target.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`send-pr'
The `send-pr' target is for finalizing and mailing a problem report generated either inside or outside the build and installation process. The target will automatically finalize and mail the problem.pr problem report if it has changed since the last time that `send-pr' was invoked.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege (unless the problem report file was generated as root).

6.7.1.7 Release Archive Targets

The following targets are used to generate and clean distribution archive and signature files. Whereas the `dist' target affects archives in the top build directory, the `release-archive' targets affects archives in the package distribution directory (either the top build directory or that specified with --with-pkg-distdir=DIR to configure).

You can change the directory to which packages are distributed by using the --with-pkg-distdir=DIR option to configure. The default directory is the top build directory.

`release-archives'
This target creates the distribution archive files if they have not already been created. This not only runs the `dist' target, but also copies the files to the distribution directory, which, by default is the top build directory.

The files generated are named:

strutil-0.9.2.6.tar.gz and strutil-0.9.2.6.tar.bz2

You can change this distribution directory with the --with-pkg-distdir option to configure. See `./configure --help' for more details on options.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`release-sign-archives'
This target is like `release-archives', except that it also signs the archives using a GPG detached signature. You will be prompted for a password unless you pass the GNUPGPASS variable to make. For automated or unattended builds, pass the GNUPGPASS variable like so:

`make GNUPGPASS=mypasswd release-sign-archives'

Signature files will be named:

strutil-0.9.2.6.tar.gz.asc and strutil-0.9.2.6.tar.bz2.asc

These files will be moved to the package distribution directory with the plain text archives.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`release-clean-archives'
This target will clean the release archives and signature files from the package distribution directory.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

6.7.1.8 RPM Build Targets

On rpm(1) systems, or systems sporting rpm packaging tools, the following targets are used to generate rpm(1) release packages. The epoch and release number can be controlled by the contents of the .rpmepoch and .rpmrelease files, or with the --with-rpm-epoch=EPOCH and --with-rpm-release=RELEASE options to configure. See `configure --help' for more information on options. We always use release number `1'. You can use release numbers above `1'.

`srpm'
This target generates the source rpm for the package (without signing the source rpm). The source rpm will be named: strutil-0.9.2.6-1.srpm.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`rpms'
This target is responsible for generating all of the package binary rpms for the architecture. The binary rpms will be named:

strutil-*-0.9.2.6-1.*.rpm

where the stars indicate the subpackage and the architecture. Both the architecture specific subpackages (binary objects) and the architecture independent (.noarch) subpackages will be built unless the the former was disabled with the option --disable-arch, or the later with the option --disable-indep, passed to configure.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`sign'
`srpm-sign'
These two targets are the same. When invoked, they will add a signature to the source rpm file, provided that the file does not already have a signature. You will be prompted for a password if a signature is required. Automated or unattended builds can be achieved by using the emake expect script, included in ${srcdir}/scripts/emake.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`rebuild'
This target accepts searches out a list of kernel names from the ${DESTDIR}/lib/modules directory and builds rpms for those kernels and for each of a set of architectures given in the AM_RPMTARGETS variable to make. This is convenience target for building a group of rpms on a given build machine.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`resign'
This target will search out and sign, with a GPG signature, the source rpm, and all of the binary rpms for this package that can be found in the package distribution directory. This target will prompt for a GPG password. Automated or unattended builds can be achieved with the emake expect script located here: ${srcdir}/scripts/emake.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

6.7.1.9 Debian Build Targets

On Debian systems, or systems sporting Debian packaging tools, the following targets are used to generate Debian release packages. The release number can be controlled by the contents of the .debrelease file, or with the --with-debrelease=RELEASENUMBER option to configure. See `configure --help' for more information on options.

`dsc'
This target will build the Debian source change package (.dsc file). We use release number `0' so that the entire tarball is included in the dsc file. You can use release number `1' for the same purposes. Release numbers above `1' will not include the entire tarball. The .dsc file will be named: strutil_0.9.2.6-0.dsc.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`sigs'
This target signs the .deb files. You will be prompted for a password, unless to specify it to make with the GNUPGPASS variable.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`debs'
This target will build the Debian binary package (.deb file) from the .dsc created above. (This target will also create the .dsc if it has not been created already.) The subpackage .deb files will be named: strutil-*_0.9.2.6-0_*.deb, where the stars indicate the subpackage and the architecture.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.


`csig'
This target signs the .dsc file. You will be prompted for a password, unless to specify it to make with the GNUPGPASS variable.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

7 Troubleshooting

7.1 Test Suites

7.1.1 Pre-installation Checks

Most OpenSS7 packages, including the OpenSS7 STREAMS Utilities package, ship with pre-installation checks integral to the build system. Pre-installation checks include check scripts that are shipped in the scripts subdirectory as well as specialized make targets that perform the checks.

When building and installing the package from RPM or DEB source packages (see Building from the Source RPM; and Building from the Debian DSC), a fundamental set of post-compile, pre-installation checks are performed prior to building binary packages. This is performed automatically and does not require any special actions on the part of the user creating binary packages from source packages.

When building and installing the package from tarball (see Building from the Tar Ball; and Installing the Tar Ball), however, pre-installation checks are only performed if specifically invoked by the builder of the package. Pre-installation checks are invoked after building the package and before installing the package. Pre-installation checks are performed by invoking the `check' or `check.log' target to make when building the package, as shown in testsuite:ex0.

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure
     % make
     % make check  # <------- invoke pre-installation checks
     % popd

Example 7.1: Invoking Pre-Installation Checks

Pre-installation checks fall into two categories: System Checks and Maintenance Checks.

7.1.1.1 Pre-Installation System Checks

System Checks are post-compilation checks that can be performed before installing the package that check to ensure that the compiled objects function and will be successfully installed. When the --enable-maintainer-mode option has not been passed to configure, only System Checks will be performed.

For example, the steps shown in testsuite:ex1 will perform System checks.

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure
     % make
     % make check  # <------ invokes System pre-installation checks
     % popd

Example 7.2: Invoking System Checks

7.1.1.2 Pre-Installation Maintenance Checks

Maintenance Checks include all System Checks, but also checks to ensure that the kernel modules, applications programs, header files, development tools, test programs, documentation, and manual pages conform to OpenSS7 standards. When the --enable-maintainer-mode option has been passed to configure, Maintenance Checks will be performed.

For example, the steps shown in testsuite:ex2 will perform Maintenance checks.

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure --enable-maintainer-mode
     % make
     % make check  # <------ invokes Maintenance pre-installation checks
     % popd

Example 7.3: Invoking Maintenance Checks

7.1.1.3 Specific Pre-Installation Checks

A number of check scripts are provided in the scripts subdirectory of the distribution that perform both System and Maintenance checks. These are as follows:

check_commands
This check performs both System and Maintenance checks.

When performing System tests, the following tests are performed:

Unless cross-compiling, or unless a program is included in AM_INSTALLCHECK_STD_OPTIONS_EXEMPT every program in bin_PROGRAMS, sbin_PROGRAMS, and libexec_PROGRAMS is tested to ensure that the --help, --version, and --copying options are accepted. When cross-compiling is is not possible to execute cross-compiled binaries, and these checks are skipped in that case.

Script executables, on the other hand, can be executed on the build host, so, unless listed in AM_INSTALLCHECK_STD_OPTIONS_EXEMPT, every program in dist_bit_SCRIPTS, dist_sbin_SCRIPTS, and pkglibexec_SCRIPTS are tested to ensure that the --help, --version, and --copying options are accepted.

When performing Maintenance tests, check_commands also checks to ensure that a manual page exists in section 1 for every executable binary or script that will be installed from bin_PROGRAMS and dist_bin_SCRIPTS. It also checks to ensure that a manual page exists in section 8 for every executable binary or script that will be installed from sbin_PROGRAMS, dist_sbin_SCRIPTS, libexec_PROGRAMS, and pkglibexec_SCRIPTS.


check_decls
This check only performs Maintenance checks.

It collects the results from the check_libs, check_modules and check_headers check scripts and tests to ensure every declaration of a function prototype or external variable contained in installed header files has a corresponding exported symbol from either a to be installed shared object library or a to be installed kernel module. Declarations are exempted from this requirement if their identifiers have been explicitly added to the EXPOSED_SYMBOL variable. If WARN_EXCESS is set to `yes', then the check script will only warn when excess declarations exist (without a corresponding exported symbol); otherwise, the check script will generate an error and the check will fail.


check_headers
This check only performs Maintenance checks.

When performing Maintenance tests, it identifies all of the declarations included in to be installed header files. It then checks to ensure that a manual page exists in sections 2, 3, 7 or 9, as appropriate, for the type of declaration. It also checks to see if a manual page source file exists in the source directory for a declaration that has not been included in the distribution. Function or prototype declarations that do not have a manual page in sections 2, 3, or 9 will cause the check to fail. Other declarations (`variable', `externvar', `macro', `enumerate', `enum', `struct', `union', `typedef', `member', etc.) will only warn if a manual page does not exist, but will not fail the check.


check_libs
This check only performs Maintenance checks.

When performing Maintenance tests, it checks that each exported symbol in each to be installed shared object library has a manual page in section 3. It also checks that each exported symbol has a `function', `prototype' or `externvar' declaration in the to be installed header files. A missing declaration or manual page will cause this check to fail.


check_mans
This check only performs Maintenance checks.

When performing Maintenance tests, it checks that to be install manual pages can be formatted for display without any errors or warnings from the build host man program. It also checks that required headings exist for manual pages according to the section in which the manual page will be installed. It warns if recommended headings are not included in the manual pages. Because some RPM distributions have manual pages that might conflict with the package manual pages, this check script also checks for conflicts with installed manual pages on the build host. This check script also checks to ensure that all to be installed manual pages are used in some fashion, that is, they have a declaration, or exported symbol, or are the name of a kernel module or STREAMS module or driver, possibly capitalized.

Note that checking for conflicts with the build host should probably be included in the System checks (because System checks are performed before the source RPM %install scriptlet).


check_modules
This check performs both System and Maintenance checks.

When performing System tests, it checks each to be installed kernel module to ensure that all undefined symbols can be resolved to either the kernel or another module. It also checks whether an exported or externally declared symbol conflicts with an exported or externally declared symbol present in the kernel or another module.63

When performing Maintenance tests, this check script tests that each to be installed kernel module has a manual page in section 9 and that each exported symbol that does not begin with an underscore, and that belongs to an exported function or exported variable, has a manual page in section 9. It also checks to ensure that each exported symbol that does not begin with an underscore, and that belongs to an exported function or exported variable, has a `function', `prototype' or `externvar' declaration in the to be installed header files.


check_streams
This check performs only Maintenance checks.

When performing Maintenance tests, it checks that for each configured STREAMS module or driver, or device node, that a manual page exists in section 4 or section 7 as appropriate.

The output of the pre-installation tests are fairly self explanatory. Each check script saves some output to name.log, where name is the name of the check script as listed above. A summary of the results of the test are display to standard output and can also be captured to the check.log file if the `check.log' target is used instead of the `check' target to make.

Because the check scripts proliferate name.log files throughout the build directory, a `make check-clean' make target has be provided to clean them out. `make check-clean' should be run before each successive run of `make check'.

7.1.2 Post-installation Checks

Most OpenSS7 packages ship with a compatibility and conformance test suite built using the `autotest' capabilities of `autoconf'. These test suites act as a wrapper for the compatibility and conformance test programs that are shipped with the package.

Unlike the pre-installation checks, the post-installation checks are always run complete. The only check that post-installation test scripts perform is to test whether they have been invoked with root privileges or not. When invoked as root, or as a plain user, some tests might be skipped that require root privileges, or that require plain user privileges, to complete successfully.

7.1.2.1 Running Test Suites

There are several ways of invoking the conformance test suites:

  1. The test suites can be run after installation of the package by invoking the `make installcheck' or `make installcheck.log' target. Some packages require that root privileges be acquired before invoking the package.
  2. The test suites can be run from the distribution subdirectory after installation of the package by invoking the testsuite shell script directly.
  3. The test suites can be run standalone from the libexec (/usr/libexec) installation directory by invoking the testsuite shell script directly.

Typical steps for invoking the test suites directly from make are shown in testsuite:ex3.

     % wget http://www.openss7.org/strutil-0.9.2.6.tar.bz2
     % tar -xjvf strutil-0.9.2.6.tar.bz2
     % pushd strutil-0.9.2.6
     % ./configure
     % make
     % make check  # <------ invokes System pre-installation checks
     % make install
     % sudo make installcheck # <------- invokes post-installation tests
     % popd

Example 7.4: Invoking System Checks

When performing post-installation checks for the purposes of generating a problem report, the checks should always be performed from the build directory, either with `make installcheck' or by invoking testsuite directly from the tests subdirectory of the build directory. This ensures that all of the information known to configure and pertinent to the configuration of the system for which a test case failed, will be collected in the resulting testsuite.log file deposited upon test suite failure in the tests directory. This testsuite.log file can then be attached as part of the problem report and provides rich details to maintainers of the package. See also See Problem Reports, below.

Typical steps for invoking and installed testsuite standalone are shown in testsuite:ex4.

     % [sudo] /usr/libexec/strutil/testsuite

Example 7.5: Invoking testsuite Directly

When invoked directly, testsuite will generate a testsuite.log file in the current directory, and a testsuite.dir directory of failed tests cases and debugging scripts. For generating a problem report for failed test cases, see Stand Alone Problem Reports.

7.2 Problem Reports

7.2.1 Problem Report Guidelines

Problem reports in the following categories should include a log file as indicated in the table below:

`./configure'
A problem with the configuration process occurs that causes the `./configure' command to fail. The problem report must include the config.log file that was generated by configure.

`make compile.log'
A problem with the build process occurs that causes the `make' command to fail. Perform `make clean' and then `make compile.log' and attach the config.log and compile.log files to the problem report.

`make check.log'
A problem occurs with the `make check' target that causes it to fail. Perform `make check-clean check.log' and attach the config.log, compile.log and check.log files to the problem report.

`sudo make install.log'
A problem occurs with `sudo make install' that causes it to fail. Perform `sudo make uninstall' and `sudo make install.log' and attach the config.log, compile.log, check.log, and install.log files to the problem report.

`[sudo] make installcheck.log'
A problem occurs with the `make installcheck' target that causes the test suite to fail. Attach the resulting tests/testsuite.log and installcheck.log file to the problem report. There is no need to attach the other files as they are included in tests/testsuite.log.

`[sudo] make uninstall.log'
A problem occurs with the `make uninstall' target that causes the test suite to fail. Perform `sudo make uninstall.log' and attach the config.log, compile.log, check.log, install.log, installcheck.log, tests/testsuite.log and uninstall.log file to the problem report.

`[sudo] make remove.log'
A problem occurs with the `make remove' target that causes the test suite to fail. Perform `sudo make remove.log' and attach the config.log, compile.log, check.log, install.log, installcheck.log, tests/testsuite.log and remove.log file to the problem report.

For other problems that occur during the use of the OpenSS7 STREAMS Utilities package, please write a test case for the test suite that recreates the problem if one does not yet exist and provide a test program patch with the problem report. Also include whatever log files are generated by the kernel (cmn_err(9)) or by the strerr(8) or strace(1) facilities (strlog(9)).

7.2.2 Generating Problem Reports

The OpenSS7 Project uses the GNU GNATS system for problem reporting. Although the `send-pr' tool from the GNU GNATS package can be used for bug reporting to the project's GNATS database using electronic mail, it is not always convenient to download and install the GNATS system to gain access to the `send-pr' tool.

Therefore, the OpenSS7 STREAMS Utilities package provides the `send-pr' shell script that can be used for problem reporting. The `send-pr' shell script can invoked directly and is a work-alike for the GNU `send-pr' tool.

The `send-pr' tool takes the same flags and can be used in the same fashion, however, whereas `send-pr' is an interactive tool64, `send-pr' is also able to perform batch processing. Whereas `send-pr' takes its field information from local databases or from using the `query-pr' C-language program to query a remote database, the `send-pr' tool has the field database internal to the tool.

Problem reports can be generate using make, See Problem Report Targets. An example of how simple it is to generate a problem report is illustrated in autopr:ex0.

     % make pr
     SEND-PR:
     SEND-PR: send-pr:  send-pr was invoked to generate an external report.  An
     SEND-PR: automated problem report has been created in the file named
     SEND-PR: 'problem.pr' in the current directory.  This problem report can
     SEND-PR: be sent to bugs@openss7.org by calling this script as
     SEND-PR: '/home/brian/os7/scripts/send-pr --file="problem.pr"'.
     SEND-PR:
     SEND-PR: It is possible to edit some of the fields before sending on the
     SEND-PR: problem report.  Please remember that there is NO WARRANTY.  See
     SEND-PR: the file 'COPYING' in the top level directory.
     SEND-PR:
     SEND-PR: Please do not send confidential information to the bug report
     SEND-PR: address.  Inspect the file 'problem.pr' for confidential
     SEND-PR: information before mailing.
     SEND-PR:
     % vim problem.pr  # <--- follow instructions at head of file
     % make send-pr

Example 7.6: Invoking Problem Report Generation

Using the `make pr' target to generate a problem report has the advantages that it will assemble any available *.log files in the build directory and attach them to the problem report.

7.2.3 Automatic Problem Reports

The OpenSS7 STREAMS Utilities package also provides a feature for automatic problem report generation that meets the problem report submission guidelines detailed in the preceding sections.

Whenever a logging makefile target (see Logging Targets) is invoked, if the primary target fails, the send-pr shell script is invoked to automatically generate a problem report file suitable for the corresponding target (as described above under see Problem Report Guidelines). An example is shown in autopr:ex1.

     % make compile.log
     ...
     ...
     make[5]: *** [libXNSdrvs_a-ip.o] Error 1
     make[5]: Leaving directory `/u6/buildel4/strxns'
     make[4]: *** [all-recursive] Error 1
     make[4]: Leaving directory `/u6/buildel4/strxns'
     make[3]: *** [all] Error 2
     make[3]: Leaving directory `/u6/buildel4/strxns'
     make[2]: *** [all-recursive] Error 1
     make[2]: Leaving directory `/u6/buildel4'
     make[1]: *** [all] Error 2
     make[1]: Leaving directory `/u6/buildel4'
     SEND-PR:
     SEND-PR: send-pr:  Make target compile.log failed in the compile stage.  An
     SEND-PR: automated problem report has been created in the file named
     SEND-PR: 'problem.pr' in the current directory.  This problem report can
     SEND-PR: be sent to bugs@openss7.org by calling 'make send-pr'.
     SEND-PR:
     SEND-PR: It is possible to edit some of the fields before sending on the
     SEND-PR: problem report.  Please remember that there is NO WARRANTY.  See
     SEND-PR: the file 'COPYING' in the top level directory.
     SEND-PR:
     SEND-PR: Please do not send confidential information to the bug report
     SEND-PR: address.  Inspect the file 'problem.pr' for confidential
     SEND-PR: information before mailing.
     SEND-PR:
     % vim problem.pr  # <--- follow instructions at head of file
     % make send-pr

Example 7.7: Problem Report from Failed Logging Target

7.2.4 Stand Alone Problem Reports

The OpenSS7 STREAMS Utilities package installs the send-pr script and its configuration file send-pr.config in ${libexecdir}/strutil along with the validation testsuite, see See Test Suites. As with the testsuite, this allows the send-pr script to be used for problem report generation on an installed system that does not have a build directory.

An example of invoking the package testsuite and then generating a problem report for failed cases is shown in autopr:ex2.

     % [sudo] /usr/libexec/strutil/testsuite
     % # test cases failed...
     % /usr/libexec/strutil/send-pr
     SEND-PR:
     SEND-PR: send-pr:  send-pr was invoked to generate an external report.  An
     SEND-PR: automated problem report has been created in the file named
     SEND-PR: 'problem.pr' in the current directory.  This problem report can
     SEND-PR: be sent to bugs@openss7.org by calling this script as
     SEND-PR: '/usr/libexec/strutil/send-pr --file problem.pr'.
     SEND-PR:
     SEND-PR: It is possible to edit some of the fields before sending on the
     SEND-PR: problem report.  Please remember that there is NO WARRANTY.  See
     SEND-PR: the file 'COPYING' in the top level directory.
     SEND-PR:
     SEND-PR: Please do not send confidential information to the bug report
     SEND-PR: address.  Inspect the file 'problem.pr' for confidential
     SEND-PR: information before mailing.
     SEND-PR:
     % vim problem.pr  # <--- follow instructions at head of file
     % /usr/libexec/strutil/send-pr --file problem.pr

Example 7.8: Invoking send-pr Directly

The advantage of the approach shown in the example is that the send-pr script is capable of collecting the testsuite.log file and the failed test cases and debugging scripts from the testsuite.dir directory and including them in the problem report, as well as all package pertinent information from the installed send-pr.config.

7.3 Known Problems

The OpenSS7 Project does not ship software with known bugs. All bugs are unknown.

Verified behaviour is that behaviour that has been verified by conformance test suites that are shipped with the OpenSS7 STREAMS Utilities package.

Unverified behaviour may contain unknown bugs.

Please remember that there is NO WARRANTY.

See also Bugs, or file BUGS in the release directory.

Licenses

GNU General Public License



GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
     Copyright © 1989, 1991 Free Software Foundation, Inc.
     675 Mass Ave, Cambridge, MA 02139, USA
     
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
  1. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

    Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

  2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

    You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

  3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
    1. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
    2. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
    3. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

    These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

    Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

    In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

  4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
    1. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
    2. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
    3. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

    The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

    If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

  5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
  6. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
  7. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
  8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

    If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

    It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

    This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

  9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.
  10. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

  11. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,